Early humans far more intelligent than what mainstream science has portrayed ever since Darwin

Early humans in the Americas hundreds of thousands of years ago

Blinkered and naïve interpretations of the fossil record about to be nationally forced on American children as “fact”

Objective, ahead of their time, and now vindicated historical researchers who were ridiculed by their own day’s mainstream science machine

Science classrooms in the U.S. and other countries on the verge of control by monopolistic organizations

These are a few of the subjects those in the Pleistocene Coalition are not afraid to take by the horns. More and more researchers are beginning to realize that something is amiss in the modern science community which can only be reformed from without.

A second look at early sapient culture

By Trevor McNaughton

Contentions over biological evolution aside, how is it that Africa became the only possible center for the birth and growth of human culture?

Whether it is as multiple exits or the more romantic notion of a single exit, few mainstream researchers seem able to consider any other possibility than that humanity matured to what we call the “sapient” level within Africa. (Sapient: having or showing sound wisdom or judgment).

The question is how is it that Africa became the only option mainstream anthropology is willing to consider? Asking this simple question points to other questions that might help us gain a different perspective on the problem.

First, does the available lithic evidence somehow prove that sapience must have come out of Africa? (‘Lithics’ refers to humanly-worked stone). I would like to suggest that it does not prove this and that it is more a matter of our interpretation of the evidence that leads to this popular conclusion.

Secondly, could there be a bias in the interpretation that might be skewing the results? Again, I would suggest that there is indeed a bias, one caused by the fact that we—modern Homo sapiens—appear to be the only humans remaining on the planet. This bias makes us tend to look at lithic evidence in such a way as to claim the more advanced work as our own when this may not always be the case.

When you settle down and actually start to investigate the various early humans found outside of Africa who reached a mature culture level a different picture seems to fall into place. The 1.8 million-year old site of Dmanisi in Georgia, for instance (Figs. 1 & 2), contains a skull indicating that a toothless partially disabled member of the local community was cared for.

In both Europe and western Asia Neanderthal evidence...
A second look at early sapient culture (cont.)

"In Europe and western Asia Neanderthal evidence suggesting a broader social and cultural interaction than traditionally recognized is almost daily reported."
by more than the desire to fly. At around the time the Wright brothers took to the air, Pearce in New Zealand was in the air, a man in Connecticut was in the air, and there were experiments in Germany and in England and in France and in other places. The only connections between all of these attempts was the calendar age and the motivation and rush of blood to the head built on the achievements of previous ages alongside the will to take the baton further.

We, on the other hand, record only the one presumed to be the winner based on a local bias and usually the efficiency of someone else’s publicity machine.

In prehistory the parameters are not so easily defined and the publicity machines were not available in a more hand-to-mouth existence. However, it is interesting that right throughout Africa and then the rest of the world, lithic ages began in relatively short periods and ended usually in relatively short periods at a time when communication and teaching skills did not have the required abilities to spread technology in the time available. The cultures which impacted on specific areas and remained with the same areas for an extended time were perhaps more politically motivated as a point of difference and control of a small area or band, more than intellectual ability or actual racial grouping. But by the same token they might also mean nothing more than a cultural and political bias for design not based on efficiency or cultural superiority or simple isolation by being deserted within a larger less habitable area while the rest of the world passed them by.

Continuing with modern-day analogies, today, war-tanks from one manufacturing country are easily identifiable by someone who studies them, but the tank designs do not dictate the race involved or much else of the actual people who made them in anything more than known political bias. The same holds true for every artifact produced within a given area in prehistory. The balance is the same then and now. And when trade becomes a factor, goods are made to suit the client as well as the manufacturer. Otherwise, there is no sale or exchange. And sale and exchange might well define the parameters of the spread of a perceived culture through a larger area of what may actually be very unrelated people.

What is becoming slowly more evident is that we—who presume ourselves to be Homo sapiens sapiens—are, in reality, a hybrid species and the hybridization has taken place and altered the base stock right throughout the globe, only differing as a matter of greater or lesser degree. The further away from a point of contact and the greater the intermediate barriers the less change there is in the base stock; and everything from there is overlay followed by overlay followed by overlay and a history of pause and motivation based on the availability of food resources. But in the end, the base stock or stocks are still at the core of given populations no matter how well they are disguised.

Now, to return to Africa, there is nothing within the bounds of prehistoric Africa which ensured either survival or advancement of erectus, heidelbergensis, or sapiens past a certain stage of development and many things which compared less favorably with areas outside of Africa in the same time period.

Africa may have been the core for the early development of the species but once the species was established Africa offered more impediments than motivations for further development in the areas where Homo had been established. The nest had become too constricting and climate and landscape challenges too much of a single negative order. Once out of Africa the challenges were different, multifaceted, and more inclined to prompt development.

In traditional archaeology we look back and try to make yesterday fit the today we know and accept. Instead, we should allow prehistory to stand coldly and clinically on its own merits. We need to forget the equation “sapiens,” or the idea that sapiens is the only species to survive and accept that almost all the species back as far as Homo erectus were and are really a part of the sapiens dynasty and blood line. I believe that our tentative steps into the world of genetics will in time reinforce this view.

One more small conundrum: It is generally accepted that we share 95% of our genes with the chimpanzee. Yet the growing volume of genetic advancement also suggests that we share only a maximum of 4% of our genes with the Neanderthal? Is it really saying only 4% of our genes are identifiable different enough to be Neanderthal and that most of the remainder we share with them anyway? If so, the spectrum of difference is little more than a time engendered one and we are Neanderthal and erectus and all of the variations in between then and now; and there was never more than an intertwined stock with regional variations due to close breeding. Perhaps this situation pulsed throughout all of time and Neanderthal and erectus and company are no more or less than our grandparents and great-grandparents and should be honored as such.

Trevor McNaughton is a retired stud breeder from New Zealand. He has written three prior articles for PCN: “Basic polynomial genetics applied to hybrid vigour” (PCN #20, November-December 2012), “In Defense of Neanderthals” (PCN #25, September-October 2013), and Ice and air differentials (PCN #28, March-April 2014).
Member news and other info

Calico News
– Virginia Steen-McIntyre

In early April, the spring issue of The Calico Core arrived in my mail box. It’s the newsletter for the Friends of Calico Early Man Site Inc., and Calico Mountain Archaeological Site, Yermo, California. In it they list the proposed by-law changes to be voted on by the membership in May. Of interest to us is the formal change of the site name from “Calico Early Man Site” to “Calico Mountains Archaeological Site.” This in keeping with their new emphasis on near-surface excavations only. That’s like scratching around in the frosting of a cake while totally ignoring the cake itself!

Chris, a lithics (worked stone) expert, has offered to share with us some of the choice specimens and tell us a bit about how they were formed in a series of short pieces which will appear in future issues of this newsletter. Looking forward to it!

Older and older peoples in the New World
After Tom Baldwin’s recent overviews concerning the rapidly changing views about how they were formed in a series of short pieces which will appear in future issues of this newsletter. Looking forward to it!

Mitochondrial DNA reveals surprises
– Virginia Steen-McIntyre

From American Scientist

> Cont. on page 5
March-April 2014 p. 10

It wasn’t supposed to be that way. A 130k-year-old toe bone from Denisova Cave (Siberia, Russia) was that of a Neanderthal, not a Denisovan, as revealed by mitochondrial DNA analysis. Comparing the new Neanderthal genome to those of Denisovans and modern humans, researches substantiated that Denisovans and Neanderthals diverged from one another after their common ancestor diverged from modern humans. The three human lineages interbred multiple times after they diverged, although it wasn’t a common occurrence.

Denisovan-like DNA meanwhile was collected from a 400k-year-old Spanish femur thought to belong to a Neanderthal. The fossil could (1) represent a common ancestor of Neanderthals and Denisovans; (2) be from a different hominin lineage; or (3) cause anthropologists to rethink their views on Denisovan origins. They were previously thought to have inhabited Asia, not Europe.

Prüfer, K. et al. 2013. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature doi: 10.1038/nature12886 (Published online December 18).


Artist member, Michael Winkler, author of Ancient art and modern language, PCN #5, May-June 2010, has sent an update on one of his current installations.

Winkler, who creates original installations around the world created this recent one (Fig. 1) in Brooklyn, New York. Of the installation he writes:

“I’ve created a new installation in Havemeyer Park, Brooklyn. The installation, SUBTEXT, is meant to explore connections between modern language and early artifacts. Recent exhibitions include: Alignments, an installation at Galeria AT, Academy of Fine Art, Poznan, Poland; a large-scale wall installation in Poetic Positions at the Kassel Art Museum in Germany; and a 20-year survey at the Rosenwald Gallery, Van Pelt-Dietrich Center, University of Pennsylvania.

On Imagining Language: “What Rasula and McCaffery have accomplished is to put together an astonishing and unprecedented assemblage of the multiple ways in which language has been used or been conceptualized in relation to reality. Imagining Language is a continuous revelation.”

-Jerome Rothenberg, Professor of Visual Arts and Literature, University of California, San Diego

Website: winklerwordart.com
Regarding the recent issues of *Pleistocene Coalition News*

"Congratulations for the last PC issue! Very good indeed!"
"Probably the best journal out there for cutting edge research."
"Thank you for tremendous effort of scientific journal publication."
"You have developed a more than first class publication and resource."
"What a fantastic issue! Congratulations to all."
"Pleistocene Coalition News. I can understand what a huge commitment this is.”
"What [an] incredible job you and the others are doing. … PCN is leaving behind a legacy that will probably shape what comes along in this century. Great stuff. And thanks so much for all you have done and are doing, and this goes for everyone involved. … awesome."
"The entire issue is fascinating. … Looking forward to more issues of PCN hammering away at ignorance!"
"I am in full agreement with you on our (Canada too) extremely narrow education system. … This seems to even extend into the universities, so even at this age our young people are not able to at least hear the various views that extend to so many areas of science. This includes the subject area as covered by your very fine publication. … extremely valuable contribution… We have so very little to be enthused about if we are only subject to the mainstream dogma so very prevalent in science today."
"I admire very much your work and courage. … PCN is a very important contribution to contemporary knowledge."
"Very well done—many thanks and admiration for you and your co-editors."
"You are doing a heroic job. … I have saved every copy."
"Even some people from Australia’s mainstream … ‘behind the scenes’ have often expressed admiration for the PCN profile, for your courage, tenacity and willingness to tackle sensitive and controversial topics, exposing dishonesty in mainstream science."
"I am thankful for your concerted effort in providing update and important information on Pleistocene prehistory."
"I enjoyed all the articles for their actuality and creativity."
"Wonderfully done, as have been the earlier Issues."
"Keep up the good fight, victory is on the horizon!"
"The last issue of PCN is again a masterpiece in layout and content—congratulations for you and your coworkers!"
"This was a great year for the PCN, sending ripples across the world."
"Thank you for the PCN last issue and congratulations for the new remarkable contribution to prehistory."
"Many thanks for…PCN; also thanks to the contributors for very interesting and valuable articles."
"A pleasure to read all the well edited and vividly illustrated papers!"
"I am looking with great interest on your PC-News!"
"The last PCN issue arrived well, thank you very much! We again understand what it means to get all the information together and put it into such an interesting publication."
"Keep up your always very good work."
"You guys are my heroes!"
"Congratulations of your being able to continue to your most valuable publication, the Pleistocene News. The Pleistocene News serves the purpose of countering the huge amount of dogma and rhetoric that surround so many scientific subject areas."
"You are living history—keep it going."
"Thank you for another great issue. I enjoyed it enormously and am happy to see that authors are choosing such relevant and current topics, which all come together to form a harmonious whole. The PCN editors formulated an unparalleled webzine-profile, the importance of which will only be fully appreciated by future generations—with the benefit of hindsight.”

The editors of PCN are all volunteers. We thank our readers very much for these comments.
Forgotten heroes of archaeology

James Reid-Moir, FRS, 1879–1944

By Kevin Lynch and Richard Dullum

James Reid-Moir (Fig. 1), the British researcher who in 1923 challenged and convinced a commission of scientists of very early man in Britain (Ancient tools of the Crag, PCN #12, July-August 2011; Ancient tools of the Crag, Part 2, PCN #14, November-December 2011; Who was Red Crag Man? PCN #16, March-April 2012; James Reid Moir’s Darmsden legacy, PCN #18, July-August 2012, and James Reid-Moir was right on track 100 years ago, PCN #28, March-April 2014) came to the town of Ipswich (Suffolk, England) in the year 1881 aged two, from Hitchin in Hertfordshire, when his father, Lewis Moir, bought the tailor shop on the Thoroughfare. Lewis installed his family in accommodation above the business premises (Fig. 2).

As the business grew and prospered they were able to move several times into more and more comfortable accommodation in the town.

At school age James was sent to a Dames School in Ipswich. Although a happy and friendly child, he enjoyed his own company, preferring to read books than play the usual games of his contemporaries.

Moir was then sent to the school of Mr. J.E. Champness, a school represented by the sons of young gentlemen and designed to fit the pupils for a commercial career.

At this time he was a stout thickset young man, earning the nickname, “Tubby.”

At Christmas 1894, in his sixteenth year, his father took him into the business. In later years, James Reid-Moir stated, “I never took to business. In my spare time I played golf and read books on travel. I became obsessed with reading all I could about Tibet for example.”

At age 24 an incident took place which would change Moir’s life for ever. Whilst playing golf with a friend, the friend picked up a barbed and tangled arrowhead. They discussed the find and Moir realized that he must learn more of these fascinating objects and purchased a copy of Sir John Evans 1872 book, The Ancient Stone Implements: Weapons, and Ornaments of Great Britain. His searching for, and general interest in, the subject became an obsession and he neglected his duties at the tailoring business.

In 1910, after spending several years searching the brick pits and archaeological sites in the Ipswich area, he wrote his now famous letter to The Times (a.k.a. The London Times) detailing his finds of humanly-worked flints in the glacial deposits of Suffolk.

Moir had previously been told that Man had not existed until after the glacial deposits had been laid down. It was also at this time that Moir attracted the interest of several noted prehistorians. These included Sir Alan Sturge; Lewis Abbott; Lt. Col. Underwood (who had moved to Ipswich); and Sir Arthur Keith, the Scottish anatomist and anthropologist (Fig. 3, following page).

Regarding Moir’s discoveries, Keith wrote:

“About the time the Prehistoric Society was founded, I became interested in the study of ancient man and made the acquaintance of field geologists, among them that of Reid-Moir. Towards the end of 1911, I received a letter from him informing me that he had dispatched to the Royal College of Surgeons a solid block of sand and clay, in which the friable remains of a human skeleton were embedded. The block was dug from under the glacial boulder clay which is spread over the Ipswich plateau, but at the point where the skeleton lay it was only a little over 4 feet in thickness.

He called in expert geological witnesses who agreed with him that the skeleton lay under an unbroken extension of the Chalky Boulder Clay and therefore represented pre-glacial man.

From the block there emerged, by skilful quarrying, the skeleton of a tall man, in a crouched pos-

> Cont. on page 8
James Reid Moir biography (cont.)

"He called in expert geological witnesses who agreed with him that the skeleton lay under an unbroken extension of the Chalky Boulder Clay and therefore represented pre-glacial man."

–Sir Arthur Keith regarding archaeological discoveries by James Reid-Moir

Fig. 3. Anatomist and anthropologist, Sir Arthur Keith.

Fig. 4. Reid-Moir’s good friend, E.R. (Ray) Lankester.

"He was around this time that Moir had married Mary Frances Moberley and they had set up home at 12 St. Edmonds Road in Ipswich. In his fathers time the business had prospered but now with James neglecting it in favor of his prehistoric pursuits, it was in decline, so much so that in 1912, following a short illness, Lewis gave James notice to quit.

James was distraught. How would his family survive without an income? It was here that his good friend Ray Lankester came to his assistance. Lankester (Fig. 4) was, at this time, president of the Ipswich Museum and offered Moir work there.

However, fate intervened and the old man died leaving the business to James.

In order to spend time away from tailoring, James took on a partner to look after the business, named Francis Hugh Ingamells.

Moir now threw himself into his chosen occupation, writing several books and papers totaling some two hundred and fifty works.

However the business continued in decline and the Moirs were forced to even smaller premises at One-house Lane in Ipswich. This was only a short distance from the brick pits of Messrs. Bolton and Laughlin in Dales Road where Moir had found some of his most remarkable specimens.

It was at this time that his finds had come to the attention of the Abbe Brueil and Marcellin Boule, the French prehistorians. Their rejection of his implements led Moir to address a letter to the Geological Museum Magazine, October 1915. He wrote "The evidence laid before him, and announced his change of opinion at a meeting held in Liege the following year. From this point after, whenever referring to Moir, the Abbe Brueil spoke of him as "my good friend James Reid-Moir."

In the interim Moir had sought to protect his business by forming a limited company and to that end Alston and Moir Ltd was born with outlets at #9 Buttermarket (Fig. 6, following page) and 11 The Thoroughfare (Fig. 5). They ceased trading on 1st November 1931. It was a very difficult time for him. He wrote "This beastly question of L.S.D. (pounds, shillings and pence) would keep cropping up."

> Cont. on page 9
However, some financial aid began to come from various sources, The Percy Sladen Fund, grants from the Royal Society and from wealthier museums The Wellcome and The Field. He made more from broadcasting and a little by pen. A civil list pension was granted to him of £100 per annum.

In 1940 at the beginning of the Second World War, a stray bomb demolished his home. He was destitute. A good friend afterward allowed Moir and his wife to stay at the Millhouse in the hamlet of Flatford (Fig. 7).

Tommy Parkington had purchased Flatford Mill with the intention of renovating it, but allowed Moir to stay at the Millhouse for as long as he wished.

It was here, in the quiet of the English countryside, that Moir continued his writing.

He wrote, “I am as poor as a church mouse but have never been happier.”

Moir died on 24th February 1944 from coronary thrombosis. He was in his sixty-fifth year.

After his death his old friend Parkington presented to Ipswich Town Council an inscribed plaque to Reid-Moir on a bench to be placed beneath an ancient oak tree on Valley Road hill. Moir had campaigned for its preservation when a proposed housing development programed its destruction (Fig. 8).

Regrettably Moir is remembered for some conclusions that he did not get right. However, recent finds at Happisburgh on the Norfolk coast, of artifacts dating to almost 1 million years old, and the more recently discovered footprints of pre-glacial man found at the same site go quite a way to vindicating Moir’s memory (See Reid-Moir was right on track 100 years ago, by Richard Dullum and Kevin Lynch, PCN #28, Jan-Feb 2014).

James Reid-Moir is yet to receive from modern prehistorians the proper recognition he deserves. After all, he was right!

KEVIN LYNCH is a retired British businessman, an amateur archaeologist, archivist and member of the Prehistoric Society of Britain. An avid collector of flints from his local countryside and beaches, he and his wife live in Hadleigh, Suffolk, UK. Lynch’s specialty is British archaeology of the late 19th and early 20th centuries concentrating on the life and works of J. Reid-Moir. He and Richard Dullum have lately blended their interests in prehistory to write a series of articles dealing with the hey-day of British archaeology at the turn of the 20th Century.

RICHARD DULLUM is a surgical R.N. working in a large O.R. for the past 30 years as well as a researcher in early human culture. He is also a Vietnam vet with a degree in biology. In addition to his work with Lynch, he has written five prior articles for PCN.

All of Lynch and Dullum’s articles about Classic British Archaeology in Pleistocene Coalition News can be found at the following link: http://pleistocenecoalition.com/index.htm#Dullum_and_Lynch

---

*"The current number of L’Anthropologie contains a paper by M. Boule entitled ‘La Paléontologie Humaine En Angleterre’ which is the most extraordinarily biased statement it has ever been my ill fortune to read.*

-James Reid-Moir writing to the magazine of the Geological Museum regarding the narrow views published therein."
Resolving the mystery of the Flagstaff Stone: a call for help

By Jeffrey Goodman PhD, anthropology, geological engineer

The Flagstaff Stone (Fig. 1) is an archaeological object discovered 23 feet below the ground at my excavation just north of Flagstaff, Arizona, 1979.

The stone is a small flat rock measuring about 2 by 3 inches. It has a number of straight lines engraved across both sides. Beyond the petrographic studies already done, a thin section cutting across several of the inscribed lines on the stone is desperately needed.

Photographic (SEM) documentation and spectral analysis of the stone and its inscribed lines would give a more complete picture.

The Flagstaff Stone offers profound information on how far back in time early man goes in the Americas and what he knew. This is why authenticating the stone and its age must be convincingly established and documented. John Feliks, the editor of this publication, who has been through many scientific wars with the academic establishment, has made this most important step clear to me. I seek help in establishing and documenting the engraved stone’s authenticity, age, and provenance.

Popularly referred to as the “Flagstaff Stone,” according to estimation by volcanic ash specialist Dr. Virginia Steen-McIntyre, who analyzed the object and provided a full report (Steen-McIntyre 1982), the engravings are at least 70,000 years old and possibly as much as 250,000 years old. Based on petrographic studies of the Flagstaff area, I believe the stone itself to be from the eruption that produced the Sugarloaf Ash, which has been dated by the potassium-argon method to approximately 280,000 years.

The late Dr. Alan Bryan, Professor of Archaeology, University of Alberta, directed the excavation at Flagstaff in 1979. The stone was found in sediments from a depth of 23 feet believed to be a compound soil informally called by geologists in the area “the 100k year old soil.”

Fig. 1. The late Dr. Alan Bryan, Professor of Archaeology, University of Alberta, directed the excavation at Flagstaff in 1979. The stone was found in sediments from a depth of 23 feet believed to be a compound soil informally called by geologists in the area “the 100k year old soil.” Photo by the late Alexandar Marshack.
The Flagstaff Stone (cont.)

(weathering in place) of the original rock. Dr. Ferry observed that the undisturbed clay on the bottom part of the stone (the result of the *in situ* weathering) had a characteristic flakey structure to it (a sort of crater pattern) and noted that the clay in most of the grooves also had this distinct pattern. To Ferry, this meant that all the grooves with clay in them were old.

A third petrographic study of the Flagstaff stone was made in October 1982. Dr. Virginia Steen-McIntyre, a tephrochronologist (a petrographer who specializes in the study and dating of ejected volcanic materials), then an adjunct professor in the anthropology department at Colorado State University, conducted a more detailed study of the piece (Steen-McIntyre, 1982).1

In addition to a petrographic study, Steen-McIntyre took specific samples of all the weathering products coating the stone and chemically analyzed them in a field laboratory. Her more definitive chemical tests were able to distinguish:

1) the "fresh" or unweathered parent rock ("tuff"),
2) the weathered volcanic glass and mineral fragments immediately below the waxy clay,
3) a reddish stain on the surface of the tuff,
4) the waxy clay rind that still partially covered the rock and the grooves, the result of weathering *in situ*, and,
5) a sample of the adhering sandy matrix in which the fragment had been buried and which coated the weathering rind in places. The matrix itself was weathered and had clay-rich feldspar fragments coated with dusty tan clay.

Flakes of the waxy clay weathering rind were still occasionally preserved in the scribed grooves, demonstrating that the grooves themselves were made before the piece was buried and had begun the *in situ* weathering process.

In effect, the engraved lines were encased in a time capsule, and weathering rinds of this type usually take a long time to form.

Dr. Steen-McIntyre wrote in her report (Steen-McIntyre, 1982):

> “The petrographic character of the volcanic rock itself, the waxy clay coat, and sandy matrix material [as seen through the microscope] suggest considerable age. The only samples I have examined that show a comparable degree of weathering were samples dated 250,000–300,000 years from the Valsequillo region, central Mexico. In this region occur several dated layers of dacitic [volcanic] ash. Of these layers, those younger than approximately 20,000 years contain fresh pyroxene crystals and clear [volcanic] glass shards. It is only at approximately 22,000–24,000 years that orthopyroxene crystals begin to show signs of etching and the glass begins to cloud. ...The samples from specimen #378 (Flagstaff stone) are all highly weathered by comparison. This suggests an age for them considerably greater than 24,000 years.”

* A soil at 15 feet at the site, 8 feet above the soil that contained the stone, was radiocarbon dated to approx. 25,000 B.P.

In 1981, my plans for further work at the site and study of the stone came to a sudden halt. The US Forest Service denied a permit for further excavation by Dr. Bryan and me, and demanded the return of the Flagstaff Stone and related stone tools. (Antiquity law designates that the Forest Service needs to consult with the head archeologist at the Smithsonian on such matters. At that time, it was Dr. Dennis Stanford.) The study of the stone in Flagstaff at the Forest Service’s offices by Dr. Steen-McIntyre in 1982 required special permission from the Forest Service.

The stone resided in the storage facilities of the Coconino Branch of the U.S. Forest Service for 30 years (from 1981 until 2011) until the Forest Service honored my request for the return of the Flagstaff Stone.”
The Flagstaff Stone (cont.)

Dr. Sharp intended to take a cross-section after examining the stone with Raman Spectroscopy, thermal emission spectroscopy, and x-ray diffraction. A well-placed cross-section would clearly show the relationship of the lines to the weathering products and the burial soil. We also believed that a scanning electron microscope could help reveal the tools used and re-used to inscribe each line, as well as the order in which the lines were made. In addition, we talked about tomography, and about getting profiles of the features of the lines using a “profilometer” (an instrument used to measure a surface’s profile in order to quantify its roughness).

Relevant to the work on hand was a study of an engraved Pleistocene mammoth bone from Vero Beach, Florida. It was reported in June of 2010 in the Journal of Archaeological Science by University of Florida archaeologists. Scanning electron microscopy was used to study color, texture and wear changes of the engraved lines. Energy dispersive x-ray spectroscopy was used to study the elemental composition of the surface. The emphasis of the study was to show that the engraving was not a forgery and that it was old.

I was very lucky to have someone with Dr. Sharp’s expertise to conduct this new study. The specimen would be safe in his hands. However, no actual lab work was ever done on the stone. For whatever reason the stone sat in Dr. Sharp’s lab for three years with no work being done. I sadly asked Dr. Sharp to return the stone to me in April of this year.

After 30 years, I once again was able to see and touch the once mud-encased engraved stone I logged into the field book for the dig, while I sat on a mountain slope above the very deep excavation shaft that produced it. I had to laugh because the graduate students who saved the stone for me to examine when I visited the dig were about to discard the stone until one of my amateur helpers said it looked like Atlanteans were playing tic tac toe on it. So here I am again with the stone that still needs to be recognized for what it is. I need help in demonstrating that the artifact is genuine and the lines are as old as many believe they are.

When the study is concluded we should be able to say that the wisdom and scientific intelligence of the culture that produced the Flagstaff Stone—no matter how long ago they lived—is clearly and unequivocally demonstrated. The fact that it challenges most generally accepted ideas about our early human ancestors and their supposedly “primitive” minds and beliefs is a conundrum that future textbooks and theorists will have to confront.

Thus, my call for help to anyone who could provide this kind of advanced analysis. If not you, maybe you have a friend in a geology or materials science department or laboratory who would be willing to do so.

References cited


JEFFREY GOODMAN, PhD, is an archaeologist and geologist. He has a professional degree in Geological Engineering from Colorado School of Mines, an M.A. in anthropology from the University of Arizona, an M.B.A from Columbia University Graduate School of Business, and a PhD. in anthropology from California Coast University. For nearly 10 years, Goodman was accredited by the former Society of Professional Archaeologists (SOPA) from 1978 to 1987. Two of his four books, American Genesis and The Genesis Mystery, included accounts of his discovery of an early man site in the mountains outside of Flagstaff, Arizona. For more information see The Flagstaff Stone: A Paleo-Indian engraved stone from Flagstaff, Arizona, PCN #11, May-June 2011.

E-mail:
Jeffrey Goodman
<jdgd818@yahoo.com>
One man’s experience with the Establishment’s penchant for explaining things away

By Jarrod Barker Magazine producer, Avocational archaeologist

In my personal archaeological research I’ve been focused on the shores of Lake Erie (and a few inland sites) beach and general shoreline lithic retrievals—on the Canadian side of the lake—for many years.

The surf and weather are odd bedfellows, on one hand revealing and on the other destroying, so it seemed obvious to me that I should keep eyes to the ground, sand, and wave line and to pick up what seemed to me to be artifactual.

Occasionally friable materials turn up such as large, disarticulated bones. Even such obviously modern items as a basket made from reeds turned up.

And then there’s the teeth—found in several varied locations and in indirect association with what look to me like artifacts and pierced pebbles. I’ve yet, however, to find any of this material in situ, i.e. still buried in its confining sediments.

Some of the teeth seem to have been ‘broken’ perpendicular to the long axes, some seem to have been burned and some show calcified deposits of calculus in the interproximal grooves (I worked in dentistry for several years so have a basic understanding of tooth morphology and deposit identification etc).

Some teeth were found inland quite a few miles away from Lake Erie.

I later contacted Dr. Danny Walker, RPA, Wyoming Assistant State Archaeologist at the Comparative Osteology Museum and Zooarchaeology Laboratory. I emailed to him photos and descriptions of the teeth. He kindly offered to study several of the teeth. (Dr. Walker is a co-author of the research paper, Unraveling the sequence and structure of the protein osteocalcin from a 42 ka fossil horse, Geochimica et Cosmochimica Acta 2006;70(8):2034-44.)

Along with his graduate students, Dr. Walker identified the teeth as those of Equus scotti—Pleistocene horse.

Now the story begins to resemble somewhat the X-files. The established archaeological community here in Ontario and the Royal Ontario Museum (I made all aware of the teeth, the lithics and the identification offered by Dr. Walker) disputed the finds, the identification and the lithics. The Royal Ontario Museum also told me that if I had the teeth dated and they showed as pre-contact, then they would offer this explanation—that the teeth were deposited on the Lake Erie shoreline after being brought aboard lake freighters from Europe; i.e. that they may have filled their ballast with gravels which could have included the teeth.

Putting aside the ridiculous probability and odds of this being possible, as well as the fact that Equus scotti is a North American horse, they failed to address the fact that some teeth were discovered inland—many miles away from Lake Erie.

Jarrod Barker is an online magazine publisher, artist/musician, and avocational archaeologist from Port Dover, Ontario. He is founder and producer of the news magazine, The Silo, with a focus on culture and science. Barker studied Humanities and Comparative Literature at McMaster University in Ontario and has earned scholarships to study new media and interactive art at Toronto’s Canadian Film Centre (CFC). Barker has also worked in cancer drug therapy research for MBVax Bioscience.

Website: http://www.thesilo.ca/
Debunking evolutionary propaganda, Part 7
The inconvenient facts of living fossils: Mollusca

By John Feliks

“Like brachiopods, molluscs ... provide for an excellent, unbroken fossil record from the Cambrian to the present. Most of the classes of molluscs living today ... were already present in the Cambrian.”

-Animals Without Backbones, Buchbbaum et al 1987, Third Ed., p. 520

“If my theory be true, numberless intermediate varieties ... must assuredly have existed; ... evidence ... could be found only amongst fossil remains.”

-Charles Darwin, The Origin of Species, 1859, p.179

In this series I offer an expanded definition of the term living fossil to reflect the true facts of the fossil record and to include organisms with remarkably long histories though they eventually went extinct. Noting that this definition is based on date ranges agreed to by international consensus it can be stated that all taxa remain the same since their first appearance. This is critical evidence in the fossil record of which the public is unaware.

So, what does science do if it has not found the required numberless intermediate fossils but only well-established organisms persisting for hundreds of millions of years? (See Figs. 1–7.) What you do is “ignore” the facts, appeal to U.S. legislative powers,

<table>
<thead>
<tr>
<th>Genus, etc.</th>
<th>Current living fossils</th>
<th>Range</th>
<th>Fossils recovered in situ by the author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helcionelloida Eogastropoda Orthogastropoda (snail taxa; See Fig. 5)</td>
<td>Unchanged 542 million years</td>
<td>Cambrian–Recent; 543.7 MYA–Present</td>
<td>Worldwide 1 3/16&quot; long Palytozoa; in situ author Silurian; Waldron, Indiana</td>
</tr>
<tr>
<td>Protobranchia subclass (nud clams, etc.)</td>
<td>Unchanged 520 million years</td>
<td>Cambrian–Recent; 520 MYA–Present</td>
<td>Worldwide 3/4&quot; long Nuculoida-type clam; Pennsylvaniaian (slab w/Mesolitium brachi)</td>
</tr>
<tr>
<td>Paralelodontidae family (clam; actual aragonitic shell preserved)</td>
<td>Unchanged 479 million years</td>
<td>Ordovician–Recent; 478.6–Present</td>
<td>Worldwide 1 1/2&quot; Paralelodon, in situ Pennsylvaniaian; Kittanning, Pennsylvania</td>
</tr>
<tr>
<td>Pectinida order (scallops; See details in Fig. 7)</td>
<td>Unchanged 439 million years</td>
<td>Silurian–Recent; 439 MYA–Present</td>
<td>Worldwide 15/16&quot; wide Aviculopenet; Mississippian; rec. by author; Jackson, MI</td>
</tr>
<tr>
<td>Nautilus (coiled cephalopod)</td>
<td>Unchanged 339 million years</td>
<td>Mississippian–Recent; 339 MYA–Present</td>
<td>Worldwide 1/2&quot; w ammonite substituting; see Fig. 4, Ontario, Canada</td>
</tr>
<tr>
<td>Ostrea (oysters)</td>
<td>Unchanged 272 million years</td>
<td>Permian–Recent; 272.5 MYA–Present</td>
<td>Worldwide 3 3/8&quot; wide (8.5 cm) Ostrea; rec. in situ by author; Pleistocene; south Florida</td>
</tr>
<tr>
<td>Venus (clam; compare age range with Anadara)</td>
<td>Unchanged 140 million years</td>
<td>Cretaceous–Recent; 140.2 MYA–Present</td>
<td>Worldwide 5 3/16&quot; wide (13.1 cm) Venus; rec. in situ by author; Pleistocene; south Florida</td>
</tr>
<tr>
<td>Anadara (clam; compare age range with Venus)</td>
<td>Unchanged 140 million years</td>
<td>Cretaceous–Recent; 140.2 MYA–Present</td>
<td>Worldwide 3&quot; wide (7.5 cm) Anadara; rec. in situ author; Pleistocene; south Florida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genus, etc.</th>
<th>Former living fossils</th>
<th>Range</th>
<th>Fossils recovered in situ by the author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belemnitidae (compare extinction date with Inoceramus)</td>
<td>Unchanged 476 million years</td>
<td>Cambrian–Cretaceous; 542.0–66.043 MYA</td>
<td>Worldwide 3/4&quot; long Belemnitidae rec. in situ Cretaceous, South Dakota</td>
</tr>
<tr>
<td>Palaeoeloidea (clam genus; subclass Nuculanoida 488.3 MYA–Present)</td>
<td>Unchanged 348 million years</td>
<td>Ordovician–Cretaceous; 488.3–140.2 MYA</td>
<td>Worldwide 1 1/16&quot; w Palaeoeloidea rec. in situ Mississippian, Jackson, MI</td>
</tr>
<tr>
<td>Cyclonemia (snail genus; subclass Eogastropoda 498.5–Present; See Fig. 5)</td>
<td>Unchanged 305 million years</td>
<td>Ordovician–Jurassic; 466.0–161.2 MYA</td>
<td>Worldwide 1 3/16&quot; w Cyclonemia rec. by author in situ Ordovician; Butler Co., Ohio</td>
</tr>
</tbody>
</table>

The inconvenient facts of living fossils: Mollusca

A lifelong reader of textbooks in every field exposes “thousands” of examples of false statements of fact and other propaganda techniques easily spotted in anthropology, biology, and paleontology textbooks

Fig. 1. Geometric study by the author of a 250,000-year-old handaxe featuring a “living fossil” Spondylus shell (Triassic–Recent, i.e. unchanged for 235 million years) carefully-framed by ancient man in what is now West Tofts, Norfolk, U.K. The figure is Fig. 2 from The impact of fossils on the development of visual representation. Rock Art Research, November, 1998. The paper proposed that early humans were able to associate fossils with their living counterparts. Since this did not support the idea of cognitive evolution, mainstream anthropology blocked the paper. It is the same reason paleontology and biology conceal evidence of living fossils.

The date ranges in this article are from Fossilworks: Gateway to the Paleobiology Database, Macquarie Univ. Dept. of Biological Sciences, Sydney, Australia. The database is assembled by hundreds of paleontologists and is based on the fact that the same fossils are present throughout the world.

Fig. 2. A few examples of thousands of orders, families or genera (presently mollusca) showing no evolution across hundreds of millions of years—facts hidden from the public.

Fig. 3. Before extinctions all of the worldwide genera presented were living fossils. Examples rec. by author from formations across U.S. and Canada over a 30-yr. span.

> Cont. on page 15
The inconvenient facts of living fossils: *Mollusca* (cont.)

Judicial and educational powers together, and force Darwinism “as fact” on impressionable children trapped in captive-audience classrooms before they learn critical thinking skills.

This under-handed action is a disgrace in science and a misuse of U.S. government authority in education. I am speaking of the Next Generation Science Standards (NGSS) craftily formulated with the involvement of such institutions as the American Association for the Advancement of Science (AAAS) forcing a State ideology on children.

The forcing of an ideology on children proves it is time for an external investigation into how these organizations are getting away with something that goes against the very nature of science—setting up a system to prevent conflicting evidence.

> Cont. on page 16

---

<table>
<thead>
<tr>
<th>Genus, etc.</th>
<th>Former living fossils</th>
<th>Range</th>
<th>Fossils recovered in situ by the author</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Conocardium</strong></td>
<td>(an extinct group of unique molluscs)</td>
<td><strong>Unchanged 285 million years</strong></td>
<td>Ordoivician–Permian; 460.9–252.3 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>3/4&quot; long Conocardium; rec. in situ Devonian; Whitehouse Quarry, Ohio</td>
</tr>
<tr>
<td><strong>Michelinoceras</strong></td>
<td>(a.k.a. Orthoceras, straight nautiloid cephalopod)</td>
<td><strong>Unchanged 283 million years</strong></td>
<td>Ordoivician–Triassic; 488.3–205.6 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>2 11/16&quot; Michelinoceras; Ordoivician, Newton-Hamilton, Pennsylvania</td>
</tr>
<tr>
<td><strong>Tornoceratina</strong></td>
<td>(coiled ammonite)</td>
<td><strong>Unchanged 252 million years</strong></td>
<td>Ordoivician–Cretaceous; 391.9–140.2 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>1/2&quot; w Tornoceras rec. in situ, Devonian; Arkona, Ontario, Canada</td>
</tr>
<tr>
<td><strong>Grammysioidea</strong></td>
<td>(clams)</td>
<td><strong>Unchanged 250 million years</strong></td>
<td>Ordoivician–Triassic; 471.8–221.5 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>2&quot; long Grammysioidea; Devonian; Pottsville, Pennsylvania</td>
</tr>
<tr>
<td><strong>Tropidodiscus</strong></td>
<td>(snail; compare synchronous age range w/clam, Nuculites)</td>
<td><strong>Unchanged 236 million years</strong></td>
<td>Ordoivician–Permian; 488.3–252.3 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>11/16&quot; Tropidodiscus; in situ Devonian; Seven Stars, Pennsylvania</td>
</tr>
<tr>
<td><strong>Nuculites</strong></td>
<td>(clam; compare synchronous age range w/ snail, Tropidodiscus)</td>
<td><strong>Unchanged 236 million years</strong></td>
<td>Ordoivician–Permian; 488.3–252.3 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>3/4&quot; long Nuculites; rec. in situ Devonian; Seven Stars, Pennsylvania</td>
</tr>
<tr>
<td><strong>Platyceras</strong></td>
<td>(snail)</td>
<td><strong>Unchanged 222 million years</strong></td>
<td>Silurian–Triassic; 443.7–221.5 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>3/4&quot; wide Platyceras; rec. in situ Mississippian; Mt. Vernon, Missouri</td>
</tr>
<tr>
<td><strong>Modiomorpha</strong></td>
<td>(clam)</td>
<td><strong>Unchanged 214 million years</strong></td>
<td>Ordoivician–Triassic; 455.8–242.0 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>1 1/2&quot; Modiomorpha; in situ Devonian; Pottsville, Pennsylvania</td>
</tr>
<tr>
<td><strong>Edmondia</strong></td>
<td>(clam)</td>
<td><strong>Unchanged 205 million years</strong></td>
<td>Ordoivician–Permian 457.5–252.3; MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>1 3/10&quot; Edmondia; rec. in situ author Pennsylvania, Pennsylvania</td>
</tr>
<tr>
<td><strong>Allorisma</strong></td>
<td>(clam)</td>
<td><strong>Unchanged 166 million years</strong></td>
<td>Silurian–Permian; 418.7–252.3 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>3 3/8&quot; Allorisma; in situ Pennsylvania; Junction City, Kansas</td>
</tr>
<tr>
<td><strong>Tentaculites</strong></td>
<td>(an extinct group of unique molluscs)</td>
<td><strong>Unchanged 162 million years</strong></td>
<td>Ordoivician–Carboniferus; 488.3–326.4 MYA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worldwide</td>
<td>7/16&quot; ea Tentaculites; rec. in situ Devonian; Arkona, Ontario</td>
</tr>
</tbody>
</table>

---

Fig. 4. Continuing examples of well established living fossils with astounding existence ranges and no morphing between genera. Despite Darwinism forced on the public this is the truth of the fossil record. Date ranges are agreed to by international consensus.

Fig. 5. Three fossil snails demonstrating a great continuity through time. Their combined classes extend from the Early Cambrian 542 million years ago up to the Present. Such continuity, as with all fossils, is concealed by Darwinism through unbridled division in the present taxonomic system used in anthropology, paleontology, and biology. The system requires different groups to either be discovered or rhythmically created. For instance, the two fossils are not only called different species, but different genera, different families, different orders, and even different subclasses. The bottom fossil is regarded as a different class entirely. Like with ammonites, think dog breeds, not different species. Bottom: *Aldanella*, class Helcionelloidea, Cambrian, 542 million years old (Shaler & Foerste 1888). Middle: *Platystoma*, subclass Eoegregiopodida, 498 million years ago–Present, Silurian (from fossilization by the author); see Fig. 2. Top: *Naticepseis*, subclass Orthogastropoda, 488.3 million years ago–Present (Natural History Museum).
The inconvenient facts of living fossils: **Mollusca** (cont.)

of this series I showed through citation that American biology, paleontology, and anthropology textbooks are packed with fraud in the name of science (Basic propaganda techniques in college textbooks, PCN #23, May-June 2013; Fictions taught as fact in college textbooks, 1st half, PCN #23, May-June 2013; and 2nd half, PCN #24, July-August 2013). Because of pre-commitment to evolutionism—an ideological belief system that depends upon ignoring the facts of the fossil record—the modern taxonomic system is not objectively driven. Imagine if chemistry’s Periodic Table of the Elements was not taught as objective science but was instead interlaced with philosophies attempting to substitute for religion. The Table of the Elements is profound because of its objectivity. The fossil record should be taught in the very same way. Evolutionists can use it. Creationists can use it. And anyone who wants to use it objectively without any philosophical aim in mind can use it. If we want the fossil record to be taught as science then we need to look at it with clear eyes and let it take us where it leads.

**Table:**

<table>
<thead>
<tr>
<th>Genus, etc.</th>
<th>Former living fossils</th>
<th>Range</th>
<th>Fossils recovered in situ by the author</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Caritodens</strong> (clam, a.k.a. <strong>Pterinea</strong>&lt;sup&gt;1&lt;/sup&gt;)</td>
<td><strong>Unchanged 161 million years</strong></td>
<td>Ordovician-Permian; 456.1–295 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2¾​&quot; wide (7 cm) Caritodens; rec. in situ Ordovician; Little Bay de Noc, U.P.</td>
<td></td>
</tr>
<tr>
<td><strong>Goniasma</strong> (snail; superorder Caenogastropoda 488.3 MYA–Present; unchanged 488 million years)</td>
<td><strong>Unchanged 157 million years</strong></td>
<td>Devonian–Permian; 409.1–252.3 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9½“ wide (24 cm) Goniasma; rec. in situ, Pennsylvanian; Paris, Illinois</td>
<td></td>
</tr>
<tr>
<td><strong>Econospira</strong> (snail)</td>
<td><strong>Unchanged 153 million years</strong></td>
<td>Devonian–Permian; 412.3–259.0 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13½“ wide (34 cm) Econospira; rec. in situ, Pennsylvanian; Paris, Illinois</td>
<td></td>
</tr>
<tr>
<td><strong>Inoceramus</strong> (clam; compare extinction date with Belemnites)</td>
<td><strong>Unchanged 130 million years</strong></td>
<td>Jurassic–Cretaceous; 196.5–66.0 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3/4” wide (9.6 cm) Inoceramus; rec. in situ, Cretaceous; Alexandria, Nebraska</td>
<td></td>
</tr>
<tr>
<td><strong>Mooreoceras</strong> (straight cephalopod with Paleonello clam)</td>
<td><strong>Unchanged 124 million years</strong></td>
<td>Devonian–Permian; 376.1–225.3 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2” long (5 cm) Mooreoceras; rec. in situ, Mississippian; Jackson, Miss</td>
<td></td>
</tr>
<tr>
<td><strong>Col-linoniceratidae</strong> ammonite family</td>
<td><strong>Unchanged 112 million years</strong></td>
<td>Jurassic–Cretaceous; 183.0–70.6 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 5/16” wide (3.2 cm) Collinoniceras; in situ; Cretaceous; Alexandria, Nebraska</td>
<td></td>
</tr>
<tr>
<td><strong>Orthonota</strong> (ancient razor clam)</td>
<td><strong>Unchanged 97 million years</strong></td>
<td>Ordovician–Devonian; 457.5–360.7 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1/2” long (3.8 cm) Orthonota; rec. in situ Devonian; Pottsville, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td><strong>Baculites</strong> (straight cephalopod)</td>
<td><strong>Unchanged 78.5 million years</strong></td>
<td>Cretaceous–Paleocene; 140.2–61.7 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11/16” Baculites; recovered in situ Cretaceous; W. South Dakota</td>
<td></td>
</tr>
<tr>
<td><strong>Ambyonychia</strong> (a.k.a. Byssonchir clam)</td>
<td><strong>Unchanged 63 million years</strong></td>
<td>Ordovician–Devonian; 471.8–409.1 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1/2” Ambyonychia rec. in situ; Ordovician; Middletown, Ohio</td>
<td></td>
</tr>
<tr>
<td><strong>Euryzone</strong> (snail genus; subclass Orthocerata 488.3 MYA–Present; unchanged 488 million years; See Fig. 5)</td>
<td><strong>Unchanged 52 million years</strong></td>
<td>Silurian–Devonian; 422.9–370.6</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/8” Euryzone rec. in situ, Devonian; Milan, Illinois</td>
<td></td>
</tr>
<tr>
<td><strong>Treptoceras</strong> (nautiloid genus; order Orthocerida; 112.6 MYA, unchanged 376 million years)</td>
<td><strong>Unchanged 20 million years</strong></td>
<td>Ordovician; 466.0–445.6 MYA</td>
<td><strong>Worldwide</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2” long (5 cm) Treptoceras; in situ, author; Ordovician; Boone Co., Kentucky</td>
<td></td>
</tr>
</tbody>
</table>

---

<sup>1</sup>John Feliks has specialized in the study of early human cognition for twenty years demonstrating beyond any reasonable doubt that human cognition does not evolve. Earlier, his focus was on the invertebrate fossil record studying fossils in the field across the U.S. and parts of Canada as well as studying many of the classic texts (Treatise on Invertebrate Paleontology, Index Fossils of North America, etc.). With the advent of the Next Generation Science Standards setting up a Federally-controlled education system forcing a common ideology on U.S. children as fact while blocking discussion of opposing evidence, Feliks encourages students of all ages to require teachers present all evidence objectively and to demand that evolutionism be held to the same accountability as normal sciences.
Brain matters, Part 3: What determines intelligence?

By Vesna Tenodi MA archaeology; artist and writer

Form and substance—shape and content?
In the last two articles I mentioned brain size as a potentially misleading marker of intelligence and cognitive capacity (more on this below). In actuality, brain morphology, density and convolution, as well as the shape of the skull, appear to be far more important (see Fig. 1 for a map of the brain’s basic regions).

Likewise phrenology (the study of head shape to determine intelligence and personality) and morphology (the study of the form and anatomical structure of the brain) also can only lead to tentative conclusions.

According to brain science today, brain plasticity is a dominant factor in determining intelligence. Plasticity refers to the brain’s ability to change as a result of learning. This means our intelligence can be enhanced or dulled throughout life. The effort we put into thinking and learning can change neural pathways and synapses, can change behavior, and make us better or worse human beings. This notion led to the rapidly evolving field of brain morphometry, or neuroimaging, usually through magnetic resonance. Morphometry allows researchers to quantify anatomical features of the brain in terms of shape, mass, and volume. It also makes it possible to derive more specific information such as encephalisation quotient, grey matter density, white matter connectivity, cortical thickness and other variables, which then can be mapped within the brain volume or on the brain surface. All these subfields of brain science are parts of the emerging field of neuroinformatics, which is developing algorithms to analyse the new data.

As a result, we can understand why there have been geniuses with tiny brains, and idiots with huge ones throughout history.

Einstein’s brain was smaller than the average, and weighed only 1,230 grams, while the ordinary adult brain weighs about 1,400 grams. His brain has been analysed since his death in 1955, in order to find more clues to his superior intelligence.

One of the features which might account for Einstein’s genius is the unusual thickness of the corpus callosum—the large bundle of fibres that connects the two cerebral hemispheres and enables information transfer and communication between them. Also, the shape of Einstein’s brain is different from the common shape, with a larger than average prefrontal cortex, and highly developed convolutions (Brain: a Journal of Neurology, September 2013).

Croatian-born scientist Nikola Tesla, a deeply inspired inventor, is another genius who had a brain smaller than the average, but with a large prefrontal cortex, as well as a high, wide forehead. The prefrontal cortex is an indicator of the capacity for abstract thinking and imagination. Tesla was famous for conducting his experiments in his mind first, in his “virtual laboratory,” where he “visualised” the experiment until he was satisfied and started testing it in the laboratory.
What determines intelligence? (cont.)

up to 1,900cc. This is much larger than that of the average modern human (again, 1,400cc). And yet, until recently, Neanderthals were deemed incapable of cognition and conceptual thinking.

Intelligence determined by thought

Brain plasticity (its ability to change and develop throughout life, generating new or losing existing neural connections) means that certain types of thought can lead to the development of a particular part of the brain, while inactivity leads to shrinkage in other parts of the brain.

Some people are born with a brain better designed for particular types of thought. Innate predispositions and talents can be enhanced or stunted, depending on personal choice, effort, and determination.

Recent advancements in brain science show us that no feature should be taken as definitive proof of a primitive mind or an evolved intelligence.

"No feature should be taken as definitive proof of a primitive mind or an evolved intelligence."

The French poet, journalist and novelist, and Nobel Prize laureate, Anatole France (as cited), had a brain weighing only 1,200 grams, well below average. And yet, he left us some of our best insights into human nature.

On the other end of the brain size scale there is the Neanderthal, with a brain of type of behaviour to a small region inside the skull. How regions communicate with each other (brain dynamics) is important, in addition to brain shape and topography.

Heidelberg University in Germany has been conducting extensive research to obtain insight into the functional interactions among brain regions, and to explore ways to enhance higher functions such as mental alertness and imagination.

Imagination, creativity, abstract thinking, as well as the capacity for embracing new ideas all reside in the frontal lobes [Human Brain Project, Heidelberg University, 2013].

VESNA TENODI is an archaeologist, artist, and writer based in Sydney, Australia. She received her Master’s Degree in Archaeology from the University of Zagreb, Croatia. She also has a diploma in Fine Arts from the School of Applied Arts in Zagreb. Her Degree Thesis was focused on the spirituality of Neolithic man in Central Europe as evidenced in iconography and symbols in prehistoric cave art and pottery. After migrating to Sydney, she worked for 25 years for the Australian Government, and ran her own business. Today she is an independent researcher and spiritual archaeologist, concentrating on the origins and meaning of pre-Aboriginal Australian rock art. In the process, she is developing a theory of the Pre-Aboriginal races which she has called the Rajanes and Abrajanes. In 2009, Tenodi established the DreamRaiser project, with a group of artists who explore iconography and ideas contained in ancient art and mythology.

Website: www.modrogorje.com
E-mail: ves@theplanet.net.au
Brain matters, Part 4: Open mind versus closed mind—The view from Australia

By Vesna Tenodi MA archaeology; artist and writer

An open mind, or open-mindedness, means having a mind that is receptive to new ideas and information. Having an open mind is contrasted with close-mindedness which will reject ideas without any consideration. The opposite of open-mindedness is inflexibility in thinking, or mental rigidity, and a diminished capacity for imagination and abstract reasoning. Conventional science is sometimes perceived as being closed-minded.

Closed-mindedness in science is a special problem because it defies the very purpose of science. The scientific method requires open-mindedness and an unbiased investigation of the available data. The first true rule of science should be to follow the evidence where it leads—regardless of where it leads. Archaeological practice in Australia over the last three or four decades could well be described as closed-minded. It has become so entrenched in dogma that some may think archaeology in Australia is now a lost cause. But there were—and are—some exceptional people who give us hope that all is not lost. It is even more interesting when such people who criticise the mainstream are themselves a part of it.

In Australian academia there is an open-minded archaeologist who just may bring some sense back into Australian prehistory. He is Peter Hiscock, Professor of Archaeology at the University of Sydney. Professor Hiscock does not shy away from controversy or confrontation. He has openly criticised the current approach in which contemporary tribes have the final say in the interpretation of archaeological material. He sees the current ethnographic approach and the imperative of consulting Aboriginals to inform on prehistory as a flawed method of research. His rational approach and his view that contemporary tribes should have nothing to do with the interpretation of Palaeolithic cultures has made him quite a few enemies. In response, some emotional researchers have accused him of being “insensitive to Aborigines.”

Some of Dr. Hiscock’s accusers call his approach “arrogant.” He further alienated mainstream scientists by calling for them to pay more attention and to acknowledge and note of unconventional views of the Australian past. He made a case for the importance of alternative, spiritual archaeology, and pointed out that regardless of how mystical some ideas might appear at first, they ought to be considered and discussed by conventional archaeology.

Unconventional views of Australian prehistory have often been proven to be correct. In criticism of closed-minded practices Dr. Hiscock stated:

“In recent years Australian archaeologists have been occupied with a number of pressing political issues. Amid the numerous debates in which conventional archaeologists have been engaged there has been comparatively little discussion of unconventional archaeology and the degree to which it may have increasingly encroached on the public understanding of archaeology. Alternative archaeology has presented to the public a wide range of hidden histories, arguing that these are the real stories of the Australian past and that science intentionally denies these histories the acknowledgement they deserve.

While some of these hidden histories result from research that imitates the process of science, increasingly they are a product of mysticism embedded in New Age thinking. Significantly, the alternative archaeology has an increased publication output and there are indications of significant popularity of some of these visions. In view of these circumstances it may be that in the longer term archaeologists will benefit from greater consideration of the nature of alternative archaeology, the hidden histories it produces, and the social context in which it is generated”

-Peter Hiscock, Archaeology in Oceania, 1996

So, as we continue to explore the evidence from archaeology let us hold on to the important quality of open-mindedness.

VESNA TENODI is an archaeologist, artist, and writer based in Sydney, Australia. She received her Master’s Degree in Archaeology from the University of Zagreb, Croatia. She also has a diploma in Fine Arts from the School of Applied Arts in Zagreb. Her Degree Thesis was focused on the spirituality of Neolithic man in Central Europe as evidenced in iconography and symbols in prehistoric cave art and pottery. After migrating to Sydney, she worked for 25 years for the Australian Government, and ran her own business. Today Tenodi is an independent researcher and spiritual archaeologist, concentrating on the origins and meaning of pre-Aboriginal Australian rock art.

Website: www.modrogorie.com
E-mail: ves@theplanet.net.au

THE DEPARTMENT OF ARCHAEOLOGY AND THE SCHOOL OF APPLIED ARTS IN ZAGREB, CROATIA

P LE I S T O C E N E  C O A L I T I O N  N E W S
Tales of a fossil collector, Part 6

By John Feliks

This installment is a supplement to "The Inconvenient facts of living fossils: Mollusca," also in this issue. The reason for this emphasis is crucial and timely. It was written mostly for U.S. citizens, but those in other countries should be informed of what is happening here in the U.S. against true science.

In process in the U.S. is a nationalization of science training which includes the forced imposition on K-12 schoolchildren of a challenged myth of human origins—Darwinism—as scientific "fact." The nationalization project is known as The Next Generation Science Standards (NGSS) and is pushing a blinkered view of the fossil record as one of constant change. The fossil record itself is objective. However, the legislation is set up to prevent children from discussing evidence in the record that conflicts with Darwinism—such as no change. The institutions that drafted the NGSS document are depending on American complacency and their knowing very little about the fossil record. It is my hope that Americans will realize that they are not being dealt with squarely by these institutions.

One thing concealed by the NGSS is that the invertebrate animals one sees living in the lakes and oceans of today have been around since the dawn of time. The NGSS doesn't want children to know this as it makes it difficult to get them to believe that these animals morphed into each other. The fossil record doesn't even come close to showing such morphing.

As an example, there are few people anywhere who would have difficulty recognizing the fossils on this page (Fig. 1). Everyone can instantly recognize snails, clams, and scallops even though these fossils are hundreds of millions of years old. And if one is familiar with the modern Nautilus shell (Fig. 2, next page), one can clearly recognize it in the ancient coiled ammonite above it.

In a few instances one might even wonder if some of these fossils aren’t actually modern-day shells picked up off the beach even though the ones shown on these two pages alone are as much as 466 million years old (Cyclonema, third from the bottom above). That’s how good fossil preservation can be.

> Cont. on page 21
Yet the public is being sold a picture of the fossil record as a flawed record or as a record "imperfectly kept," as Charles Darwin, the founder of modern evolutionism had hoped it would be. But that's all it was—hope. Trust in this view of the fossil record is about as unscientific and inappropriate as anyone trained in science could get. The fact is that there is no easy-access record in existence that is more complete, more comprehensive, or more objective than the fossil record. The falsehood of imperfection or incompleteness in the fossil record is perpetuated by mainstream science for a single reason: 150 years ago the science community made the mistake of putting all of its eggs into one basket by committing to a mythology of origins that even its founder, Darwin, already knew was not supported by the fossil record. So, now they need to discredit the record because it doesn't support what they wish it did.

Part of what causes people to lose sight of the fact that these fossils are the same creatures we know today is the well-known out-of-control naming and re-naming of organisms. It's a trick that causes people to imagine that all manner of species have morphed into each other. How is it that paleontologists get away with claiming that there are tens of thousands of different species of snails, clams, and other invertebrates supposedly morphing into each other across geological time when they are clearly no more different from each other than dog breeds are? It is because many of these creatures are now extinct and can easily be called anything taxonomists wish to call them. Established organisms are regularly taken out of hundreds-year categories; and once-coherent groups are constantly being split into all manner of species, genera, and orders based on things as subtle as differently-placed muscle scars or hinge notches—until even specialists can't find what they're looking for.

Evolutionary biologist and taxonomist Professor Roderic Page at the University of Glasgow, Scotland, and former editor of the journal, Systematic Biology, has explored the problem of re-naming. In a Taxacom forum, for instance, he writes: "My question is 'why do we do this?'... As names change over time it becomes a major challenge to find everything published about a taxon. ... Why not simply accept that we can't infer relationships from the name?"

The same type of thing applies to human species as fossil record studying fossils in the field across the U.S. and parts of Canada as well as studying many of the classic texts (Treatise on Invertebrate Paleontology, Index Fossils of North America, etc.). Feliks encourages everyone to question sciences that block information and to start digging deeper to uncover the truth for themselves.
• Learn the real story of our Palaeolithic ancestors—a cosmopolitan story about intelligent and innovative people—a story which is unlike that promoted by mainstream science.

• Explore and regain confidence in your own ability to think for yourself regarding human ancestry as a broader range of evidence becomes available to you.

• Join a community not afraid to challenge the status quo. Question with confidence any paradigm promoted as "scientific" that depends upon withholding conflicting evidence from the public in order to appear unchallenged.