

VESTIGIOS DE LABOR HUMANA EN HUESOS DE ANIMALES EXTINTOS DE VALSEQUILLO, PUEBLA MEXICO

VESTIGIOS DE LABOR HUMANA EN HUESOS DE ANIMALES EXTINTOS DE VALSEQUILLO, PUEBLA MEXICO

> Trabajo realizado con el apoyo economico de la AMERICAN PHILOSOPHICAL SOCIETY y la FUNDACION MARY STREET JENKINS XXXV CONGRESO INTERNACIONAL DE AMERICANISTAS

PUEBLA
1978

Derechos reservados conforme a la ley. Gobierno del Estado de Puebla - Avenida Gobierno del Estado de Puebla - Avenida Reforma 711 - Puebla, Pue.

PRINTED AND MADE IN MEXICO
Edición para difundir la cultura
Prohibida su comercialización.

El Gobierno del Estado tiene el propósito de alentar el trabajo científico de los poblanos y presenta al público el estudio del Profr. Juan Armenta Camacho, deseando se ahonde en la investigación del pasado remoto.

SUMARIO

Se describen señales de trabajo de cazadores prehistóricos, en huesos de animales extintos del Período Cuaternario, descubiertos en Valsequillo, Puebla, (México).

SOMMAIRE
On décrit des vestiges de travail humain sur des ossements d'animaux disparus, de l'Epoque Quaternaire, découverts dans la Zone de Valsequillo, Etat de Puebla (México).

SUMMARY

Traces of human workmanship or bones of extinct animals from Valsequillo, Puebla, are described.

ZUSAMMENFASSUNG

In dieser Arbeit werden Merkmale menschlicher Tätigkeit/Arbeit beschrieben, die auf Knochen ausgestorbener Tiere aus der Quatärzeit dargestellt sind. Die Fundstellen der Knochen liegen im Valsequillo des Staites Puebla, Mexiko.
"La aventura de la Prehistoria es una larga sucesión de luchas y controversias. A cada descubrimiento es necesario roer la incredulidad de los escépticos, afrontar las burlas, convencer a las autoridades".

Henri Breuil

INTRODUCCION

La Zona Prehistórica de Valsequillo

Los materiales que aquí se describen proceden de la zona prehistórica de Valsequillo, la cual se localiza a unos 10 km . al Sur de la ciudad de Puebla; no tiene límites precisos y abarca el Vaso de Almacenamiento de la Presa 'Manuel Avila Camacho' y los poblados circunvecinos de San Francisco Totimehuacan, San Pedro Zacachimalpa y San Baltasar Tetela (en el Norte) y Santa María Tecola, Los Angeles y La Cantera (en el Sur) (Fig. I).

La zona ocupa un valle de relieve poco accidentado, que tiene pendiente general hacia el Sur, donde se apoya en las estribaciones de la Cordillera del Tentzo. Su elevación media es de 2,100 mt. s/N/M.

El sistema hidrológico del área está formado por el río Atoyac y los arroyos Alseseca y Atepitzingo, que corren de norte a sur y desaguan en el Vaso de Almacenamiento de la Presa "Manuel Avila Camacho" (vulgarmente Ilamada "'Presa Valsequillo'), que en su curva de embalse máximo (cota 2,059 mt.), cubre una superficie de $3,134 \mathrm{ht}$., con longitud de 21 km . y anchura máxima de 8 km .

El área ha sufrido una severa erosión que ha dejado al descubierto terrenos muy antiguos, entre los que se destacan afloraciones del basamento de caliza marina (cretácica), sobre la que descansa un conglomerado calizo, tobas, aluviones y sedimentos lacustres, de antigüedad no determinada y, más arriba, las tobas consolidadas y estratificadas Hlamadas 'xalnene", que soportan un grueso estrato sedimentario, de facies lacustres, denominado "Formación Telela', que tiene lentes de grava (''Gravas Valsequillo'), y es rico en restos de mamíferos cuaternarios, objeto de este trabajo. La 'Formación Tetela" está cubierta, en algunas partes, por travertinos y, en otras, por los lodos endurecidos (con detritus y piedras facetadas), de la "Formación Malinche", siendo lo más regular que esté sellada por tobas y cenizas volcánicas, tanto de procedencia muy lejana como de los cercanos aparatos volcánicos que coronan la zona (Fig. 2)*.

Los depósitos fosilíferos de Valsequillo, de donde proceden los materiales que aquí se describen, forman parte de una unidad biocstratigráfica de muy extensa distribución en el Valle poblanoHaxcalteca, según los hallazgos que ha realizado el autor en la ciudad de Puebla, en las canteras de San Felipe Hueyotlipan y en el cauce del río Zahuapan (cruce con el camino a Tres Royes), en el Norte y, hacia el Oriente, en la Barranca de! Aguilía (a la altura de San Hipólito Xochiltenango), en las barrancas de Gorozpe, la Cantera de la Curva (cerca de Tepeaca), en Pardínez y en Tecali, por mencionar sólo los más abundantes.

Los Fósiles Cuaternarios.

Los restos de grandes mamíferos p'eistocénicos son bien conocidos por los habitantes de la región, desde hace mucho tiempo, a juzgar por las leyendas populares acerca de los 'Xantilómetl'" (huesos de gigantes), que en la expresión españolizada se cambió por 'huesos de gentil'.

Con relación a esos restos, en la literatura indígena (Códice Mendocino), hay referencias de los "Quinametli' o 'Quinametzin" (los muy respetables gigantes desaparecidos).

Entre las crónicas más antiguas nos enconíramos la de Bernal Díaz del Castillo (1), quien narra que, cuando liegaron los españoles a Tlaxcala, el 25 de Septiembre de 1519, 'durante una conversación entre Cortés y Xicotonga (Xicoténcatl), los indios... dijeron que les habían dicho sus antecesores, que en los tiempos pasados que había allí poblados hombres y mujeres muy altos de cuerpo y de grandes huesos, que porque eran muy malos y de malasmaneras que los mataron peleando con ellos, y otros que dell.os quedaban se murieron. Y para que viésemos qué tamaño e altos cuerpos tenían trajeron un hueso o zancarrón de uno dellos y era muy grueso el altor tamaño, como un hombre de razonabie estatura, y aquel zancarrón era desde la rodilla hasta la cadera. Yo me medí con él y tenía gran altor como yo, puesto que yo soy de razonable cuerpo, y trajeron otros pedazos de huesos como el primero; más estaban ya comidos y deshechos de la tierra, y todos nos espantamps de ver aque!los zancarrones, y tuvimos por cierto haber habido gigantes en esta tierra. Y nuestro capitán Cortés nos dijo que sería bien enviar aquel gran hueso a Castilla para que lo viese Su Majestad, y ansí lo enviamos con los primeros procuradores que fueron'".

Años después, fundada ya la Puebla de los Angeles, el Visitador Fray Antonio Vázquez de Espinosa (${ }^{2}$) refiere que... "cuando se abrieron los cimientos para la fábrica de esta insigne y santa iglesia (Catedral), se hallaron en ellos sepulcros de gigantes, cuyos huesos eran de notable grandeza'.

Esta clase de hallazgos siquieron siendo motivo de interés durante el Virreinato, según sabemos por el trotamundos Juan F. Gemelli Carreri (3), quien visitó la ciudad de Puebla a fines del Sigio XVII y consignó en su diario de viaje que... "D. Nicolás Alvarez, maestro de ceremonias de la Catedral, me hizo ver... una costilla de gigante, tan gruesa como un brazo humano y de diez palmos de largo. Hay allí tradición que esos gigantes habitaban en los montes de Tlaxcala'.

Todos esos huesos de "gigantes" a que se refieren las crónicas y leyendas populares, parece que son únicamente restos de grandes maríferos
(*) Esta Geología Generalizada fué establecida por el autor, en forma empírica y sólo para propósitos de localización de fósiles. La estratigrafía ha sido estudiada por M. Maldonado-Koerdell, H. E. Malde, J. Brunet y F. Mooser. La petrografia cinerítica fué estudiada por V. Steen McI ntyre.
cuaternarios (mamut, mastodonte y megaterio), según se infiere de los trabajos realizados por científicos muy respetables, como Félix y Lenk $\left({ }^{4}\right)$, Osborn (${ }^{5}$), Aveleyra (${ }^{6}$), Freudenberg (${ }^{7}$), Romer (${ }^{8}$), Maldonado-Koerdell (${ }^{9}$) y Hibbard (${ }^{10}$), quienes describen formas de mastofauna pleistocénica mexicana que concuerdan bien con lo que dicen las crónicas y leyendas; mientras, por otro lado, en toda la literatura consultada so se ha encontrado ni la menor sospecha o presunción de que en México haya habido alguna vez seres humanos de talla extraordinaria, como la de los fabulosos "Quinametzin".

Los Materiales de Valsequillo.

La primera colección formal de fósiles cuater. narios de la región de Valsequillo fué la que reunió José Manzo, a fines del siglo pasado, en el Gabinete de Historia Natural del antiguo Colegio del Estado, actual Universidad Autónoma de Puebla. Entre sus materiales sobresalen restos de mamut y mastodonte, procedentes de las localidades de Totimehuacan y Tetela.

A principios de este siglo. H. F. Osborn (${ }^{11}$) extrajo una buena colección de fósiles de una localidad que él señala cercana al poblado de Totimehuacan. Estos fósiles debieron ser bien conocidos por el eminente geólogo mexicano José C. Aguilera, ya que él fué quien llevó a Osborn a ese sitio y trabajaron juntos, pero el autor no ha enco.trado ningún informe suyo a este respecto.

El primer contacto que tuvo el autor con los materiales prehistóricos del área fué un hallazgo casual que hizo, en Junio de 1933, en el cauce del arroyo Alseseca, donde un derrumbe provocado por las lluvias dejó al descubierto la osamenta de un mamut. Dos años después, en esa misma área, encontró un fémur de proboscídeo, en el que estaba clavado sólidamente un artefacto de pedernal * (${ }^{12}$).

Ese primer testimonio de la presencia de cazadores de animales extintos no pudo ser revalidado con nuevos hallazgos de artefactos asociados, no obstante el crecido número de fósiles que se logró colectar durante los años siguientes. Esta riqueza paleontológica del área hizo evidente la necesidad de realizar estudios más amplios y forma'es, por lo que, a iniciativa del autor, se fundaron, en 1956, el Departamento de Arqueología y Prehistoria (posteriormente Departamento de Antropología), de la Universidad Autónoma de Puebla y, en 1958, el Instituto Poblano de Antropología e Historia (posteriormente Centro Regional Puebla-Tlaxcala), dependiente del linstituto Nacional•de Antropología e Historia (S.E.P.).

Gracias a esos nuevos organismos, se amplió la exploración sistemática del área y se pudieron estudiar mejor los depósitos fosilíferos de Valsequillo (Fig. 1), que contienen abundantes restos de mamut, mastodonte, camello, varios tipos de equinos, gliptodonte, pecari, úrsidos, "perro-lobo", varios tipos de cérvidos, mustélidos, felinos, roedoras y otros anima'es del Período Pleistoceno**. Los materiales colectados, exclusivamente en trabajos de salvamento, permitieron que la Colección Osteológica del Departamento de Antropología de la Universidad de Puebla (CODAUP), se enriqueciera en breve con más de tres mil piezas de valor diagnóstico, a las que se sumaron algunos materiales curiosos rescatados de las cimentaciones ofectuadas dentro del perímetro urbano, como los restos de mastodonte localizados en la Calle Río Yaqui, del Fraccionamiento Jardines de San Manuel; los restos de caballo hallados en la esquina de la 2 Norte y Portal Hidalgo (Edificio Calderón); los restos de mamut que se encontraron en la 4 Pomiente 306° (Edificio Matanzo); los huesos de proboscídeo localizados en la esquina de la 3 Poniente y 5 Sur (Edificio Barranco); el fémur de proboscídeo sacado del lecho del arroyo San Francisco, a la altura de la 4 Oriente; los restos de camélido. caballo, pecari, gliptodonte y mamut que se rescataron de las construcciones en el arroyo San
(*) Para utilidad de futuros exploradores, cabe señalarse que los restos fósiles se localizaron en contacto con lentes de grava ("Gravas Valsequillo"), que son fáciles de identificar por sus clásticos de pedernal negro tabular, procedente de la caliza marina de la región. Estas gravas le sirvieron de indicio al autor para rastrear otros depósitos fosilíferos, desde las barrancas de Manza nilla (8 km al Norte de Puebla), hasta 25 km al Sur, donde se localizan los ricos depósitos de Valsequillo.
(*) La taxonomía ha sido estudiada por M. Maldonado-Koerdell y por C. E. Ray. M. Pichardo del Barrio (30), hizo un estud o especial de los proboscídeos.

Francisco, a la altura de la 48 Poniente; los restos de caballo que se encontraron en pleno Zócaio de Puebla, al ser construida una caja de registro eléctrico y los restos de mamut, asociados con lentes de carbón, hallados en la esquina de la Av. 5 de Mayo y 2 Ponic:nte (Edificio Ailes).

Los Trabajos Prehistóricos en Valsequillo.

Desde las primeras exploraciones, en Valsequillo se encontraron artefactos de pedernal, de manufactura muy burda (Fig. 4), a los que lógicamente se les dio la importancia incierta de su caracter superficial. Sin embargo, la presunción de la presencia de cazado:es prehistóricos gradualmente fué cobrando fuerza, a medida que fueron apareciendo fragmentos de hueso con formas de rotura repetidas, esquirlas modificadas y piezas con señales de uso (Fig. 5), que las autoridades consultadas desdeñaron por corsiderarlas - sin discusión- simples productos de acarreo.

No satisfecho con esa explicación, el autor se dio a la tarea de reproducir experimentalmente esas piezas, usando diferentes técnicas (V. Control Experimentall, que, al cabo de dos años, permitioron tener una razonable seguridad de que eran restos de caza y utillaje primitivo.

A los éxitos preliminares del control experimental, en breve se sumaron otros testimonios de la presencia de cazadores, tales como un artefacto asociado con restos de mamut (${ }^{13}$); un ramus de mandíbula de mamut, con un artefacto de pedernal clavado en el borde parasinfisial (Fig. 9), y un fragmento de péivis de mastodonte con la superficie interna cubierta de grabados (Fig. 64).

Con esos elementos de juicio y gracias a la intervención del Dr. Pablo Martínez del Río, Asesor Técnico del Instituto Nacional de Antropología e Historia; del Dr. Alex D. Krieger; ProfesorInvestigador de 'a Universidad de Washington; de la Dra. Hanna Maric Wormington, Curadora del Denver Museum of Natural History, y del Dr. Manuel Maldonadc-Koerdell, Asesor Técnico del Instituto Panamer:cano de Geografía e Historia (OEA), se obtuvieron fondos de la Arrerican Philosophical Society para hacer una revisión de la zona de hallazgos, que permitió encontrar otros tres huesos grabados (Figs. 75 y 77), un hueso tallado
(Fig. 50), un "adorno" (?) con perforaciones (Fig. 62) y otras piezas con huellas de labor humana, que se describen en este trabajo. (${ }^{14}$).

Justificada ya una investigación linterdisciplinaria, los doctores Wormington, Kriegen, Maldo-nado-Koerdell y Martínez del Río intervinieron nuevamente en favor del autor para organizar el "Proyecto Va'sequil'o', que se encargó de hacer excavaciones arqueológicas y los estudios complèrıntarios de campo y laboratorio.

El "Proyecto Valsequillo" investigó el área de su denominación, desde 1962 hasta 1973, con fondos proporcionados por la American Philosophical Socety, la Universidad de Harvard, la National Science Foundation, el Smithsonian Institution, el U. S. Geological Survey y 'a Universidad Autónoma de Puebla. Los trabajos cubrieron las siguientes disciplinas:

Especialida
Directores de Investigación

Arqueología
Dr. Cynthia Irwin-Wiliams
Peabody Museum of Achaelogy and Ethnology, Harvard University.

Geología
Dr. Harold E. Malde
U. S. Geological Survey

Estratigrafía y
Geoquímica de Campo
Dr. Virginia Steen-McIntyre
Br. Field Geochemistry and Petrology
U. S. Geological Survey.

Paleontología
(Vertebrados)
Dr. Clayton E. Ray
Vertebrate Pa'eontological Division
Smithsonian linstitution
Paleontología
(Moluscos)
Dr. Dwight W: Taylor
U. S. Geological Survey

Pa'inología
Dr. Paul S. Martin
University of Arizona Geochronology
Laboratories

Geocronología:

Método del C_{14}
Dr. Meyer Rubin,
U. S. Geological Survey Radiocarbon Laboratory.
Dr. R. Ni. Chatters,
Radio:sotopes and Radiations Laboratory Washington State University.

Métodos de las
Series del Uranio
Dr. Bainey J. Szabo,
U. S. Geological Survey Laboratories.

Método de
'Fission-track''
del Zirconio
Dr. Charles Naeser
U. S. Geological Survey Laboratories.

Método del
Geomagnetismo
Remanente
Dr. Roald Fryxell
Washington State University
R. and R. Lab., Pullman, Washington. Dr. Joseph Liddicoat, University of California Santa Cruz Laboratory.

A reserva de conocer los informes oficiales de cada uno de lo Directores de Investigación, pueden ya mencionarse los siguientes resultados:

1) Las excavaciones arqueológicas comprobaron la existencia de cazadores prehistóricos y descubrieron numerosos artefactos de pedernal en clara asociación con restos de fauna extinta.
2) La Paleontología precisó que la fauna es de antigüedad pleistocénica.
3) La Geología y la Estratigrafía certificaron que los restos culturales fueron haliados "in situ".
4) Las pruebas de laboratorio determinaron que los depósitos fosilíferos más viejos (donde se hallaron los restos culturales que aquí se describen), tienen una antigüedad promedio de 200,000 años.

Simultáneamente con esas investigaciones, el autor continuó el estudio particular del material óseo, siendo éste el primer informe que rinde de los trabajos que realizó.

Desde mucho tiempo antes de que se creara el "Proyecto Valsequillo'", repetidas veces vinieron a Puebla connotados especialistas; quienes examin naron los trabajos de campo y gabinete, comprobaron la autenticidad de los hallazgos y evaluaron sus características cu'turales, contándose entre ellos's los doctores D. Pablo Martínez del Río, Hanna Marie Wormington, Alex D. Krieger, Manuel Mal-donado-Koerdell, quienes supervisaron muchos aspectos de la investigación; Luis Aveleyra Arroyo de Anda, Arturo Romano Pacheco, del I.N.A.H.; Douglas S. Byers y Richard S. McNeish, del Peabody Archaeological Foundation: Hansjürgen Mülle:Beck, del Museo de Berna; Michael D. Coe, de la. Universidad de Yale; Helmut de Terra, de la Un:versidad de Columbia; Jean Brunet, de la Universidad de París; J. Cruxent, del Instituto de Investigaciones Científicas de Venezuela; Ruth DeEtte Simpson, de la Universidad de California; Alberto Rex González, de la Universidad de Córdoba (Argentina); D. Pedro Bosh Guimpera, Fredrick Peterson, Kent V. Flannery, Carl Schuster, Charles E. Rosaire, lan Cornwall y Delegados a los Congresos Internacionales que se celebraron en México, en ese lapso y a quienes el autor patentiza aquí su profundo reconocimiento.

FIGURA N•1

- ESQUEMA TOPOGRAFICO DE LA ZONA

PREHISTORICA DE VALSEQUILLO, PUEBLA.
\qquad

METODOS Y MATERIALES

Estudio; Preliminares.

Los primeros estudios de vestigios de labor humanà en huesos de animales extintos, se iniciaron en los propios depósitos de Valsequillo, donde el autor observó las siguientes particularidades:
I) Que los restos de los amimales estaban incompletos y, no obstante la abundancia de materiales y el empeño que se puso para reunir ejemplares para fines museográficos, nunca se encontró un esqueleto completo de mamíferos mayores pues, a todos ellos, les faltaban en forma sistemática las costillas, las vértebras, las pelvis y las patas. Esto resultó intrigante, especialmente tratándose de proboscídeos (mamut y mastodonte), ya que era absurdo suponer que los enormes huesos se los habían llevado los animales predatorios y también era ilógiio suponer que los agentes naturales los habían desprendido selectivamente arrastrándolos hasta hacerlos desaparecer, respetando al mismo tiempo piezas pequeñas y fragmentos ligeros, que habían quedado en gran número.
2) En contraste con el número de piezas mayores que faltaban (y que, curiosamente, corresponden a zonas anatómicas ricas en carne), se encontraron centenares de piezas dentarias, sueltas o todavía implantadas en fragmentos mandibulares*,
así como buen número de partes de cráneos, defensas, cornamentas, carapachos de gliptodonte, restos articulares, vértebras rotas y huesos cortos de las extremidades, así como otros fragmento's de valor diagnóstico.
3) Muchas de las fracturas, especiaimente de los huesos de las extremidades, tienen formas clásicas, que en Medicina se denominan "en pico de flauta', 'en rama verde'", 'en ala de mariposa'", "espiroidal", etc., que únicamente se pueden producir en vivo o muy poco tiempo después de la muerte, cuando el hueso aun está muy fresco, según es bien conocido en Traumatología y Medicina Forense.

Esas fracturas clásicas tienen una etiología bien definida que, en su caso, puede haber sido torsićn, flexión, siendo los más rumerosos los que acusan la acción de agentes vulnerantes, de mecámica precisa, que ha sido estudiada dësde hace muchos años y de la que hay una extensísima literatura médica ${ }^{15},{ }^{16},{ }^{17},{ }^{18},{ }^{19},{ }^{20},{ }^{21},{ }^{22},{ }^{23},{ }^{24}$, $25,26,27$)

Ahora bien; para que esas fracturas clásicas puedan producirse, es indispensable que concurra una serie de factores precisos y bien definidos, por lo que su repetición -en la cantidad que se observó en los depósitos- no puede atribuirse a los
(*) En orden numérico, se encontraron piezas dentarias de varios tipos de equin os, bisonte, camello, mamut, mastodonte, \mathbf{p} scari, cérvidos. cánidos, félidos, gliptodonte, úrsidos y megaterio.
simp.es agentes raturales, que tienen variantes mecánicas muy caprichosas de intensidad, punto de aplicación, sentido, duración y frecuencia.

Por otra parte, los tipos de fragmentación, la forma en que se encontraron dispersos .os materiales y la ausencia regu'ar de ciertas piezas, concuerdan correctamente con ciertos trabaios de desmembramiento, destazamiento, extracción de médula ósea y otras maniobras propias de cazadores.
4) Ademís de esos indicios, en los depósitos de Valsequilio gradualmente se fueron descubriendo huesos con rayaduras, incisiones, cortaduras, con bordes redondeados por abrasión, con extremos modificac'os en punta, aplanados o espatulados, con secécnes bruñidas, tallados, cu'minando lo hallazgos con el descubrimiento de un "adorno" (?) con perforaciones y seis huesos con grabados, todos ellos de indiscutibe labor humana; y, por si todavía quodaba algu:na duda de la presencia de cazadores, se encontró parte de una mandíbu'a de mamut que todavía tenía clavado un artefacio de pedernal. (Todos estos materialos se describon en este trabajo).

El evaluar ose coniunto de indicios, el autor l'egó a la conilus:ón que los depósiios fosilíferos de Valsequillo habían sido campamentos de caza (kill sites), y que los materiales hallados eran constancias de caza, rosto de destazamiento, utiliaje primitivo y manifosiaciones artísticas de cazadores prehistóricos.

Esa tesis no fuć aceptada por las autoridades, quienes dijeron que las experiencias médicas no erán aplicables a los animales cuaternarios y que éstos debían habor muerto a causa de las inundaciones (ya que la zona fué lacustre), y que la falta de piezas y los fraçmentos, con todas sus formas y modificaciones repetidas, incluyendo los supuestos grabados, se debía a la acción del acarreo de los arroyos, a la compresión de los terrenos y a otras causas naturaies. Respecto a las perforaciones del "adorno" (?) y al a.tefacto c'avado en la mandíbula de mamut, dijeron que eran simples accidentes ocasionados también por el acarreo.

El problemia parecía haberse estancado en el nivel puramento especulativo, cuanco afortunadamente se hallaron varios conjuntos vertebrales, una pelvis de megaierio y una pata de equino, cada uno de ellos correctamente articulados (Figs. 6 y 7) y, además, el osqueleto de un roedor, completo y
e: posición anatómica, no obstante su extrema fragilidad (Fig. 7). Con esto qued'ó comprobado que los depósitos de Valsequillo no habían sufrido acarreo ni compresión de la magnitud que se suponía.

Sin embargo, para aclarar mejor el problema, el autor prócedió a hacer una serié de pruebas que se exporen a cont.nuación.

CONTROL EXPERIMENTAL

Pruebas de Acarreo.

Técnica: Se arrojaron huesos frescos de toro y de cerdo en los arroyos Alseseca y San Francisco, en puntos donde su'corriente es violenta (Totimehuacan y 'Molino de Enmiedio).

Resu'tados: Al cab'o de tres meses, 'os huesos que pudieron recuperarse estaban completos y, sa'vo un alisamiento general, no sufrieron modificación.

Esos resultados no se consicieraren concluyentes, por la corta duración de la prueba. Sin embargo, en ocasión de estas prucbas, se tưo la opotunidad de comprobar que un gran número de huesos, provionientes de los c'esperdic:os de la ciudad, habían soportado a acción de la corriente. durante varios años; sin sufrir fractura, no obstante que algunos eran huesos de aves domésticas, de estructura muy poco resistente. (Fig. 8).

Para simular condiciones de avarreo más severas, se hicieron las siguientes pruebas mecánicas.

Prucbas de Revolvedora

Técnica: Para estas pruebas se usó una revolvedora de concreto (Klein-G-C) de medio saco (90 It de ol.a), movido con motor de 2 hp a 30 revoluciones por minuto. Como materiales de prueba se utilizaron huesos frescos de toro y cerdo. Para empezar, se llenó la revolvedora con arena, grava mediana y agua.

Resulitados: a) Después de una hora de trabajo, todos los huesos se' recuperaron completos, con la superficie a'isada, pero sin desgastes, ni araños, ni cortes.
b) Después de tres horas de trabajo, todos los huesos continuaban completos, muy bruñidos y solo un hueso de cerdo sufrió ¿desgaste reducido en una epífisis.
c) Con la revolvedora llena únicamente con grava gruesa y agua, después de tres horas de trabajo los huesos de cerdo sufrieron aplastamiento, en forma irregular, con desprendimiento de esquirlas delgadas, sin mingún parecido a las esquirlas lanceoladas, helicoidales, ni de las otras formas halladas en los depósitos de Valsequillo. Los huesos de toro no se fractuaron y sólo sufrieron pequeñas entalladuras y desgaste reducido en los cóndilos articulares.

Con estas pruebas se puede asegurar que los huesos frescos, aun sometidos a maltrato severo, no se fragmentan en las formas clásicas o conminutivas, bien conocidas en Traumatología y tal como aparecen en los depósitos fosilíferos de Valsequillo.

Pruebas de Compiesión.

Las pruebas se efectuaron en el Laboratorio de Resistencia de Materiales de la Escuela de Ingeniería Civil, de !a Universidad Autónoma de Puebla, bajo la dirección del Jefe de Laboratorio, Ing. Delfino Castellanos S.

Para los experimentos se usó una pronsa hidráulica universal (Riehle Testing Machine, Mod. MA-60).

Prueba de Compresión General.

Técnica: En una caja resistente, de madera, sin tapa, se-colocó un hueso de toro, bien acunado en arcilla-arenosa (proveniente del cstrato fosilífero "Formación Tèela'), para reproducir, en lo posible, las condiciones naturales de los depósitos de Valsequillo. A manera de tapa, se colocó una plancha de acero, unida al pistón de la compresora.

Resu'tados: Con una compresión de $1,000 \mathrm{~kg}$ $\mathrm{p} / \mathrm{cm}^{2}$, el hueso no sufrió ningún cambio visible.

A 3,000 y hasta $5,000 \mathrm{~kg} \mathrm{p} / \mathrm{cm}^{2}$, tampoco se observó deformación alguna.

Al llegar la compresión a 6,200, la caja de madera estali'ó. El hueso se conservó completo y sólo sufrió un pequeño agrietado o fisura, a mitad de la diáfisis, que el Ing. Castellanos interpretó como resuitado de la decompresión brusca.

Pruebas de Flexo-Comprensión.

(Trabajo de Viga)

Técnica: Sobre la mesa de la prensa hidráulica se colocó un fémur de toro en descanso herizontal, con sus cóndilos articulares sirviéndole a manera de pilares de apoyo y con luz de 32 cm .: A mitad de la diáfisis se aplisó una carga concentrada en cuchilia de 45^{6}, unida al émbolo de la prensa.

Resultados: A 210 kg de presión, el periostio condilar cedió, sufriendo un aplastamiento reducido.

A 840 kg . el hueso comenzó a crugir a medida que el aplastamiento condilar fué afectando el tejido esponjoso.

Al llegar la carga a $2,100 \mathrm{~kg}$ y \sin que se apreciara cadenaria, el hueso se rompió bruscamente, en varios fragmentos grandes, do formas muy irregulares, con bordes astillados, pero que, en ningún caso fueron semeiantes a los ha.lados en los depósitos de Valsequilio.*

Pruebas Manuales.

Fracturación de huescs frescos, secos y fósiles.

Para resolver el frect:ente y elemental problema de saber si un hueso fué roto en estado fresco, seco o mineralizado, el autor realizó pruebas, usando como percutor un ariefacto de pedernal (arqueológico), de unos 300 gr . de peso y filo romo, habiendo obtenido los siguientes resultados:
(*) H. Martin(28) informa que para la fractura experimental del ilíaco de caballo (que tiene una arquitectura y resistencia muy diferentes al fémur de toro), necesitó usar una presión de $1,310 \mathrm{~kg}$.

En huesos frescos, las fracturas y fisuras son idénticas a las variedades clínicas, bien conocidas en Traumatología. Regularmente sólo hay desprendimiento de paries mayores. Los bordes de fractura son netos y sólo en algunas secciones muestran las asperezas propias de las trabéculas. El tamaño y forma de las esquirlas dependen de la intensidad y dirección del golpe, así como del punto donde se aplica. Otras características de las esquirlas de huesos frescos pueden verse en la muestra de especímenes.

En huesos secos, las fracturas son predominantemente conminutivas y con la forma llamada "de madera vieja", que desprende astillas delgadas y afiladas. Las formas de fractura son en extremo variables dependiendo del grado de pérdida de osteína y la consecuente pérdida de elasticidad.

En huesos fósiles (muy mineralizados, como los de Valsequillo), las fracturas son conminutivas, con
partes generalmente prismáticas y de bordes netos. Los planos de fractura concuerdan con los de otros materiales minerales.

Además de estas pruebas manuales, se hicieron experimentos para reproducir señales de labor - humana que se observan en los fósiles de Valsequillo, mismos que se exponen en la muestra de especímenes.

Confronta. En adición a los trabajos de gabinete, a invitación del Smithsonian Institution y con el apoyo econọ́mico de la Fundación "Mary Street Jenkins", el autor hizo una confronta de especímenes selectos de Valsequillo con materiales que ha reunido esa Institución en el Museo de Historia Natural de Washington; confronta que resultó de gran utilidad para la evaluación de los materiales poblanos.

2

3
3. Artefactos superficiales: 1 , buril de pedernal; 2, punta de cuarzo rosa; 3, punta de calcedonia; 4, punta de pedernal. Los materiales liticos no son nativos de la región.

4. Restos de fauna extinta de Valsequillo, con rotura y esquirlamiento de un mismo estilo, con modificaciones, perforaciones y otras señales de trabajo humano.
5. Escápulas fracturadas en forma muy parecida.

6. 1 y 2 , piezas articuladas; que demuestran que los fósiles de la Formación Tetela sufrieron muy poco o ningún acarreo. 1, conjunto vertebral de bisonte; 2 , pélvis de megaterio.
7. 1 y 2 , piezas articuladas extraídas de la Formación Tetela. 1, esqueleto de pequeño roedor; 2, pata de caballo, desmembrada por fractura.

8. 1, 2 y 3 , huesos de los desperdicios de la Ciudad, que estuvieron sometidos a acarreo prolongado en el arroyo San Francisco. 1 y 2, huesos de aves domésticas, con desgastes mínimos; 3 , cóndilo cortado con sierra de carnicero, cuyo tejido esponjoso no fué deteriorado por el acarreo, no obstante su poca resistencia.

ESDECIMENES Lesiones $\quad d e \quad \int a z a$

El espécimen más demostrativo de este tipo de lesiones es un ramus de mandíbula de mamut, hallado en la localidad de Arenillas y que conservaba un artefacto de pedernal clavado en el borde parasinfisial (Fig. 9 y 10).

El artefacto (Fig. 13) le fué clavado al animal en vida y lo conservó en su sitio largo tiempo, durante el cual el hueso desarrolló una osteosis (o callosidad) cicatricial, bastante abultada, que recubrió parte de la lesión. Algunos osteólogos apuntan la posibilidad que este proceso cicatricial tuvo complicaciones infecciosas, que dejaron como huella las rugosidados que se observan en el borde parasinfisial (Fig. II).

Además de la lesión penétrante, el proyectil causó fracturas en fisura, que se irradian verticalmente, desde el punio de máxima penetración, hacia la cara interna del borde parasinfisial (Fig. II), que revelan la tremenda fuerza del impacto.

La mandíbula también muestra un aplastamiento traumático frontal, a la altura del alvéolo del molar anterior (Fig. 12) y fracturas en fisura de la cara lingual del mismo alvéolo, que corren verticalmente hasta el cuerpo mandibular, con desprendimiento de pequeñas partes que, al cicatrizar, se soldaron a la mandíbula (Fig. 12).

Al tratar de reconstruir las circunstancias en las que pudieron producirse esas lesiones, a título de hipótesis de trabaịo y como única explicación, el autor supone que los hombres estaban cazando al mamut (posiblemente atrapado en un fangal) y que lo golpoaron con fuerza en el hocico (hasta. romperle el alvéolo), para obligarlo a abrir las fauces y dar oportunidad a que sus proyectiles penetraran hasta el fondo de la garganta para producirie uns hemorragia mortal. Pero, para desgracia de los cazadores - y para gran fortuna de los prehistoriadores- su puntería falló y el proyectil se olavó en el borde de la mandíbula. desprendiéndose el arłefacto de su soporte y el animal se lo llevó en su huída, conservándolo por el resto de su vida.

De confirmarse esa hipótesis, se aclararía un poco el misterio de cómo pudieron ser derribados esos colosos cuaternarios, algunos de los cuales llegaron a medir 4.5 m . de alzada y cuya enorme corpulencia parecía invulnerable a las débiles varas con punta de piedra de los bizarros hombrecillos que los cazaron muchas, muchas veces. (En Valsequillo se han hallado restos de 93 mamutes y 26 mastodontes, cazados por el hombre).

Otros especímenes con lesiones de caza son varios fragmentos de huesos de las extremidades
de caballo, cuya forma arponada (Fig. 14), revela, según los estudios médicos, ${ }^{(24)}$, que fueron producidos a consecuencia de un golpe cuando los huesos soportaban el peso del cuerpo. En otras palabras, fueron producidos en vivo y estando los animales de pie.

Para confirmar esa etiología, el autor hizo la siguiente prueba:

Bajo la prensa hidráulica se colocó, verticalmente, un hueso canon de caballo y se le aplicó una presión de 200 kg ., para simular la carga que podía haber soportado estando el animal de pie. Luego, con un garrote, se le aplicó un golpe a mitad de la diáfisis, dando como resultado que el hueso se quebrara en tres partes: dos secciones mayores, cada una con una epífisis y una esquirla
intermedia, de forma arponada, idéntica a unas que se colectaron en Valsequillo y a las formas traumáticas (Fig. 14).

Otro espécimen de este grupo es un hueso de la extremidad de un artiodáctilo, que muestra fractura "en rama verde" a consecuencia de un golpe lateral, de mediana intensidad y cuando el hueso no soportaba todo el peso del animal. (Fig. 15).

Todos los huesos fracturados en forma arponada, "en ala de mariposa" y "en rama verde"'. se han clasificado como lesiones de caza por las condiciones tan específicas en que se produjeron. De estas condiciones se infiere, a título de hipótesis de trabajo' que los cazadores acostumbraban esperar el paso de los animales y, a golpes de garrote o con palos arrojadizos, les quebraron las patas para derribarlos.

10. 1 y 2 , mamut de Areni. llas. 1, vista frontal de la mandibula mostrando, en la parte superior, el aplastamiento traumático, con fractura anterior del molar y fractura en fisura de la cara lingual. En la parte media, el artefacto insertado y fracturas en fisuras producidas por el impacto. En la base, restos de su matriz de "Gravas Valsequillo", dejados deliberadamente para identificación de su contexto geológico de procedencia. 2, detalle de las "Gravas Valsequillo", con sus característicos clásticos de pedernal negro tabular.

11. 1 y 2 , mamut de Are. nillas. 1, Detalle del artefacto insertado, con las fracturas en fisura producidas por el impacto, con pequeñas partes soldadas en su interior al cicatrizar; 2, detalle de la lesión penetrante que dejó el artefacto, a cuyo alrededor puede verse la osteosis o callosidad cicatricial y las rugosidades, posiblemente dejadas por la infección de la herida.

12. 1 y 2, mamut de Arenillas. 1 vista externa del aplastamiento traumático; 2, vista interna de la misma lesión, con la fractura en fisura y las pequeñas partes que se soldaron en el fondo de la misma. al cicatrizar.

13. Artefacto de pedernal que se encontró insertado en el mamut de Arenillas.

15. Hueso de la extremidad de un artiodáctilo con fractura "en rama verde" causada por un golpe lateral.

Des a pticu|ación

Además de otras huellas de desmembramiento, ya citadas, se han encontrado huesos coxales de bóvidos y equinos con señales de desmembramiento total, por desarticulación violenta.

Las pruebas reconstructivas permitieron saber que, para arrancar la cabeza del fémur de la cavidad cotiloidea, se requiere de un gran esfuerzo a efecto de vencer la gran resistencia del ligamento redondo (que mantiene unida la cabeza del fémur con el fondo del acetábulo). Para conseguir eso, hubo necesidad de flexionar la pata del animal en
dirección contraria al movimiento natural y forzar la palanca con gran intensidad, hasta lograr arrancarla de su articulación. (En las pruebas para desarticular la pata de un toro, hubo necesidad de que las maniobras las realizaran cuatro hombres).

Esa forma de desarticulación violenta produjo fracturas en la ceja del acetábulo y ocasionales desprendimientos de partes de la pared externa de la cavidad cotiloidea, semejantes a las que presentan muchas piezas fósiles de Valsequillo (Fig. 16 y 17).

Fig 17., which should have appeared here is mistakenly replaced by a repeat of Fig. 15. in the original publication.

Esquirlas Helicoidales 。 Espirioideas

Estas son esquirlas de los huesos largos de las extremidades (principalmente de caballo, bisonte y camello). generalmente alargadas y cuya forma, en hélice o espira, sigue la curvatura del hueso (Fig. 18). Han sido clasificadas como productos indiscutibles de labor humana, por la serie de maniobras que requiere su obtención. Después de muchas pruebas, el autor sólo pudo obtenerlas de la siguiente manera:
1).-Primero sometió el hueso a torsión (Fig. 19). Esta condición indispensáble, posteriormente se vio (en prácticas de desmembramiento), que facilita considerablemente el desprendimiento de las extremidades.
2.-Luego, con golpes de percutor, fué truncando 'a epífisis proximal, cuidando que los golpes fueran de mediana intensidad, apenas para romper una parte del hueso y dejando que la fuerza de la torsión completara êl truncamiento.

La fractura de un hueso, producida bajo esas condiciones, deja bordes con la clásica forma 'en
pico de flauta" (Fig. 19). En Traumatología se ha comprobado muchas veces que una torsión violenlenta es suficiente para producir una fractura espiroidea, sin necesidad de que intervenga un agente vulnerante (Fig. 21).
3.-Finalmente, con golpes de percutor, dados vorticalmente y ligeramente hacia afuera, se van desprendiendo esquirlas del borde de la fractura previa (Fig. 19).

Las esquirlas, obtenidas de esta manera, son helicoidales o espiroideas e idénticas a las descubiertas en los de oósitos de Valsequillo (Fig. 20) y, al mismo tiempo, va quedando al desnudo el tuétano, limpio de astillas.

Al analizar esta técnica reconstructiva, resalta el hecho de que las esquirlas helicoidales están relacionadas con las prácticas del desmembramiento y la obtención de tuétano, maniobras que también realizaban los cazadores usando una técnica bastante parecida y cuyos testimonios se dan a conocer a continuación.

18. Esquirla helicoidal, hallada en la localidad de Tecacaxco obtenida al esquirlar un hueso previamente truncado bajo torsión.

19. 1 y 2 , técnica reconstructiva para la obtención de esquirlas helicoidales: 1, hueso sometido a torsión, pre. parado para ser truncado con golpes de percutor; 2. el hueso ya truncado (con borde de fractura "en pico de flauta"), preparado para ser esquirlado con golpes

[^0]
21. Fractura de tibia humana, de tipo helicoidal, causada por torsión violenta (aprés Rienau (${ }^{24}$).

Truncamiento Simple y Esquirlas Lanceoladas

Estos dos trabaịos de cazadores están íntimamente relacionados; para obtener esquirlas lanceoladas, es requisito previo hacer un truncamiento simple, según se ha comprobado en las pruebas reconstructivas y, por ello, se les ha estudiado juntos.

Truncamiento Simple.

Este tipo de truncamiento se puede observar en huesos largos de las extremidades de camello, caballo y bisonte a los cuales, sin ser sometidos a torsión, se les separó fúnicamente la epífisis proximal), con golpes de percutor, cuyas huellas pueden apreciarse, a veces, en los bordes de fractura (Fig. 22).

En algunos casos, el truncamiento fué completado por flexión, lo que deió pequeños arrancamientos en la diáfisis (Fig. 23).

Ambos tipos de truncamiento se han podido reproducir en pruebas experimentales. .

Cualquiera que haya sido el propósito de estas fracturas (que bien pudo ser el desmembramiento, la preparación para sacar el tuétano o para otros fines), debe señalarse el cuidado con que fueron hechas, evitando el aplastamiento y el astillamiento del hueso.

Esquirlas Lanceoladas ○ Foliaceas.

Como lo indica su nombre, estas esquirlas tienen una forma semejante a una punta de lanza o a la hoja de un árbol (Fig. 26). Para reproducirlas, el autor usb́ un hueso de toro, previamente truncado; lo puso verticalmente y, con golpes suaves de percutor, le fué arrancando esquirlas del borde de la fractura. De esta manera, obtuvo tres tipos de piezas, idénticas a las piezas fósiles de ValsequiHo, con las siguientes características:
1).-Esquirlas lanceoladas o foliáceas, de base plana, con un borde terso y ligeramente ondulado (semejantes a las "ondas concéntricas" de las lascas de pedernall, en tanto que el otro borde es áspero y acanalado (Fig. 28).
2).-Cuandô el golpe de percutor se hizo en dirección un poco hacia afuera del hueso, se obtuvo el mismo tipo de esquirla lanceolada, pero con la base pedunculada (Fig. 26, 3).
3). - Al terminar la maniohra, el tuétano quedó al descubierto y el resto del hueso (epífisis distal), mostraba bordes agudos y fisuras características, idénticas a piezas fósiles de Valsequillo (Figs. 29).

22. Hueso de la extremidad de un bóvido, con truncamiento simple, hallado en la localidad Arenillas.

23. 1 y 2 , Huesos de las extremidades de equinos, con truncamiento completado por flexión. (Localidad Tecacaxco).

[^1]
24. Huesos de equino, descubiertos en las excavaciones de Hueyatlaco, entre los que se encontró un fémur truncado en bisel
25. Hueso de la extremidad de un equino, con trunca miento completado por torsión.

26. 1, 2 y 3, esquirlas lanceoladas fósiles, colectada:; f diferentes localidades, todas ellas con un lado acanala do, característico del esquirlamiento intencional. 3. es quirla pedunculada, obtenida por golpes de percutor dados hacia afuera.

27. Hueso de la extremidad de un toro, después de truncado y esquirlado en pruebas reconstructivas.

28. 1, detalle del resultado de esquirla miento experimental de un hueso de toro, con sus salientes agudos y fisuras irradiadas hacia la epifisis; 2, esquirla lanceolada, obtenida en estas pruebas, con su base plana, un lado terso y ondulado y, el otro lado, con el acanalado caracteris
tico.

29. 1 y 2 , Huesos fósiles que fueron esquirlados y que conservan bordes agudos y fisuras, semejantes a los huesos esquirlados experimentalmente.

Tpe p a n a c i ó n

Aum cuando bastante raros, en Valsequillo se han encontrado también huesos trepanados, principalmente de proboscídeos (Fig. 30). En esta pieza se puede observar que los golpes de percutor, para agrandar la abertura, ocasionaron que se ra-
jara el hueso en toda su iongitud.
Trepanaciones similares se han observado en materiales paleolíticos de Crimea, estudiados por S. A. Semenov (${ }^{31}$).

30. Hueso de proboscideo, trepanado por dos lados, hallado en Santa Maria Tecola (Valsequillo).

Cortaduras $C_{\text {reúrgicas }}$

Estos vestigios son cortaduras superficiales, incisiones o simples rayaduras -individuales o en grupo- que conservan huesos muy variados, con superficies planas (Figs. 31 a 40). Su nombre les fué dado por H . Martín (${ }^{28}$ y ${ }^{29}$) y se identifican con las que describe S. A. Semenov (${ }^{31}$), quien las estudió en huesos prehistóricos de Kostenki.

Las cortaduras creúrgicas, de acuerdo con su etimología (del griego creourgía: despedazamiento de la carne), están relacionadas con maniobras de destazamiento o trabaio de carnicero.

Control Experimental.

Para reproducir experimentalmente ese tipo de huellas, el autor usó ilíacos y escápulas de toro y. sobre ellos, cortó trozos gruesos de carne cruda y pieles frescas del mismo animal, utilizando implementos de pedernal, tanto arqueológicos como recién hechos y bien afilados, así como cuchillos de acero.

Al tratar de cortar con implementos de pedernal, el autor encontró que los materiales de prueba (tanto carne como piel), ofrecían una resistencia verdaderamente insospechada, tanto por su estructura como por el adicional deslizamiento
interior de sus tejidos y, para vencerla, hubo necesidad de ejercer una fuerte presión y realizar enérgicos movimientos de vaivén. Todo lo cual culminó, casi siempre, con el inevitable hundimiento del implemento en el hueso, produciéndole cortaduras idénticas a las variedades observadas en fósiles de Valsequillo:
a).-Cortaduras finas y muy poco profundas, cuando el hueso estaba muy fresco. (Fig. 38, I).
b).-Cortaduras más anchas y profundas, cuando se usó hueso seco (de más de 90 días de muerto el animal) (Fig. 39).

No se pudiercn reproducir unas cortaduras en extremo profundas, que conserva una costilla consolidada (Fig. 40) y que, se supone, se debieron a la poca resistencia de la osteosis cicatricial.

Cuando se trabajó con cuchillo de acero, los cortes de la carne y la piel se hicieron con mucha mayor facilidad, sin necesidad de ejercer presión y, en consecuencia, las marcas en los huesos fueron muy ocasionales y casi imperceptibles y, aun en las intencionales, fueron sensiblemente más delgadas y menos profundas que las que dejaran los filos aserrotados de los implementos de pedernal.

2

31. Fragmento de ilíaco de caballo: 1, cara ventral de la región ilíaca, con numerosas incisiones y cortaduras en la zona ocupada por el músculo obturador inter. no; 2, detalle de las cortaduras.

32. 1 y 2, Apófisis espinosas, con cortaduras creúrgicas (sólo en una de sus caras).

34. Costilla de proboscideo, con numerosas cortaauras cortas.

35. Fragmento de escápula, con cortaduras creúrgicas
y restos borrosos de un grabado (en la parte izquierda)

'38. 1 y 2, huesos iliacos de caballo, con cortaduras.

39. 1, cara labial de una mandibula de caballo, con dos cortaduras profundas, hechas posiblemente cuando el hueso ya estaba seco; 2, bóveda palatina de caballo, con cortaduras finas, hechas cuando el hueso estaba fresco.

Uso de Fuego

El uso de fuego, que es orgullosa prerrogativa del vertebrado humano, puede observarse en numerosos restos fósiles ha.lados en las localidades de Atepitzingo, Hueyatlaco y Tecacaxco, principalmente. M. Pichardo del Barrio (${ }^{30}$), al revisar la Colección Osteológica del Departamento de Antropología de la Universidad de Puebla (CODAUP). encontró más de veinte piezas, parcialmente quemadas (Fig. 4I). Esta particularidad descarta !a
posibilidad de que se tratara de un accidente natural, como sería el incendio del lugar.

Un buen espécime:n con marcas de fuego es un fragmento de mandíbula de mamut jove?, que tiene implantado un molar (M2 ?), el cual sufrió quemadura en toda su altura, con desprendimiento de dentina, cerca de la corona y carbonización profunda y resquebrajamiento en la región radicular (Fig. 43).

2

41. 1 y 2 , vértebras de proboscideo, parcialmente quemadas.

42. 1 y 2 , pedazos de huesos de proboscideo, carboni-
zados.

Fragmentos Modificados

Un buen número de fragmentos fósiles co'ectados en Valsequillo, muestran señales de haber sido modificados, con diversas técinicas, para aplanar sus extremos, biselar sus bordes, alisar algunas secciones, dándcles forma de espátula, escoplo, puntas de proyectil, puntas agudas (prismáticas y redondeadas) y otras muchas modificaciones (Figs. 44 a 60).

Por su aspecto, algunas piezas traen a la mente los alisadores de pieles, perforadores y otros tipos de utillaje prehistórico del Vieịo Mundo (${ }^{29},{ }^{31}$ y ${ }^{32}$), pero todavía no se han estudiado los trazos que dejó el trabajo en ellos y, por lo tanto, no se puede dictaminar con seguridad el uso para el que fueron destinados.

44, 1, 2 y 3, fragmentos modificados. 1, pieza con alisamiento general y una escotura bruñida; 2, pieza con un extremo biselado y pulido ($\mathrm{X}: 0.5$) ; resto de una pieza, cortada y pulida en forma de cuña o escoplo ise le ha dejado parte de la matriz, para identificación de su procedencia estratigráfica).

45. Fragmento con un extremo reducido en forma de espátula y con señales de uso.

46. 1 y 2 , fragmentos con un extremo reducido en for ma de escoplo inclinado (X : 0.5) (Ambos conservan parte de su matriz para iden tiifcación de su procedencia estratigráfical.

4.7. 1 y 2 , esquirlas con un extremo espatulado; 3 fragmento de epifisis, con dos caras aplanadas y la punta reducida en forma de escoplo.

2

48. 1 y 2, fragmentos con un extremo modificado er forma de escoplo.

49. 1,2 y 3 , fragmentos con alisamiento general y un extremo truncado y bruñido.

1

2

50. Fragmento con la superficie externa oruniad y cuyo borde fué cortado y pulido para darle contorno sigmoidal y biselarlo.

51. 1, esquirla lanceolada, con el extremo reducido en
forma de escoplo; 2, esquirla helicoidal, con ambos extremos desgastados.

152. 1 y 2 , esquirlas helicoidales, con alisarntento general y su punta agudizada.

53. 1 y 2 , esquirlas "en ala de mariposa", con sus bordes redondeados y un extremo agudizado; 3, esquirla con ambas caras aplanadas; 4, esquirla "arponada", con alisamiento general y retoques en el canal medular para acentuar dos surcos.

54. 1, fragmento de epífisis, con su extremo agudizado; 2 , fragmento con un extremo reducido en punta.

55. 1, esquirla lanceolada, con alisamiento general, con sus bordes redondeados y su punta agudizada; 2 , fragmento con alisamiento general, golpeado y con su lado mayor reducido para agudizar la punta.

56. 1 y 2, fragmentos en forma de punta, que conservan una incisión muy bien hecha; 2, esta pieza tiene, además, una escotadura cilindrica cerca de la base.

58. 1, 2, 3 y 4, fragmentos en forma de punta; 1, esta pieza, tiene incisiones y alisamiento general; 4, frag. mento de cráneo, reducido en forma de punta.

4

2
59. 1, fragmento de hueso largo de proboscídeo con la punta agudizada, marcas de golpes y alisamiento general ($\mathrm{X}: 0.25$) ; 2, fragmento de costilla de proboscídeo, modificado en forma de perforador (X : 0.50); 3, frag. mento reducido en forma de aguja ($\mathrm{X}: 1$).

60. 1 y 2, cornamentas de cérvidos con las puntas truncadas y parcialmente ahuecadas; 3, punta de una cornamenta separada por truncamiento.

Huesos Cortados

Las señales de que los huesos fueron cortados, no siempre se pueden apreciar con claridad, pues algunos ejemplares, después de cortados, fueron alisados y pulidos, borrando las huellas del implemento. Sin einbargo, la forma de algunas piezas y la limpieza con que fueron seccionadas, señalan el uso de esa técnica.

En las excavaciones arqueológicas de El Hiorno se descubrió una falange de mastodonte, que estaba en proceso de ser cortada y presenta una profunda incisión en V (Fig. 61, 1), que parece haber sido realizada con cortes convergentes,
que dejaron surcos individuales en el fondo de la incisión. Se ignora el motivo para decapitar el hueso en esa forma; pero Semenov $\left({ }^{31}\right)$ consigna que en algunas culturas prehistóricas del Viejo Mundo, algunos huesos fueron cortados de esa manera para servir de mango o empuñadura a implementos de pedernal.

Otra pieza interesante es un fragmento de hueso largo de proboscídeo, que fué cortado cuidadosamente para darle forma de alisador curvo y en cuya superficie bruñida pueden apreciarse restos del trabajo de corte (Fig. 61, 2).

61. 1 y 2, huesos cortados. 1, falange de mastodonte, en proceso de ser cortada, descubierta en las excavaciones de El Horno; la pieza conserva un corte bien claro en la región plantar; 2, fragmento de hueso largo de proboscídeo, cortado y pulido, $\epsilon \mathrm{f}$ forma de alisador o escoplo ($\mathrm{X}: 0.5$).

Pepfopación

Un excelente trabajo de perforación puede observarse en una pequeña lámina de hueso, descubierta en la localidad Atepitzingo (Figs. 62 y 63). La pieza tiene el contorno modificado; en su cara externa conserva restos de un relieve, que no se ha precisado si es artificial; su cara interna, ocupada por el tejido esponjoso, está desgastada y pulida. En la parte superior, la pieza conserva dos perforaciones, óblícuas y a diferente nivel.

Por su aspecto general, tamaño y, principalmente, por sus dos perforaciones, esta pieza sugiere que pudo haber sido un adorno, como esos que se acostumbra llevar colgados al cuello.

Como detalle curioso, este ejemplar se encontró debajo del cráneo de un mastodonte y exactamente en el sitio de donde se tomaron las muestras W-1899 y M-B-4 para las pruebas geocronológicas (V. Cronología).

62. Pequeña lámina de hueso, con el contorno y la cara interna desgastados y con dos perforaciones, halla. da en la localidad Atepitzingo.

2

63. 1 y 2 , otras vistas de la plaquita de hueso perforada, de Atepitzingo.

$H u$ e s o s $\longrightarrow p$ a b a do s:

Espécimen: CODAUP-HG-T.I

Procedencia: Tetela (Hueyatlaco)
Fecha de Hallazgo: 2 de Mayo de 1959
Colector: Juan Armenta Camacho

Descripción: Es un fragmento de pélvis de mastodonte, de contorno triangular y cuya base, redondeada, corresponde a un borde anatómico; los otros dos lados del triángulo son secc:ones de fracturas antiguas. Sus dos caras, paralelas, son superficies anatómicas; de ellas, únicamente fué grabada la cara interna, que es más lisa que la externa (Fig. 64).

Dimensiones: Altura: 15 cm $\begin{array}{lr}\text { Base: } & 19 \mathrm{~cm} \\ \text { Grueso: } & 6 \mathrm{~cm}\end{array}$

Por haber sido esta la primera vez que se descubrió, en el Nuevo Mundo, una pieza grabada de antigüedad cuaternaria y debido a la gran publicidad e importancia internaciona! que se le ha
dado, el autor se considera obligado a dar a conocer algunos detalles del hallazgo y de la investigación correspondiente.

Lugar det Ha'lazgo: La pieza fuó descubierta por el autor, durante una excursión rutinaria de salvamento, en un lugar situado a 50 mt al Norte de
lo que posteriormente fué el núcleo principal de excavaciones arqueológicas de la Localidad Hueyatlaco ('"Proyecto Valsequillo'). El sitio del hallazgo fué al pie de una pequeña elevación, donde afloran las Gravas Valsequillo (cota $2,056 \mathrm{~m}$).

Estratigráficamente, la pieza estaba situada en la porción media-inferior de la Formación Tetela, en la que estaba fírmemente empotrada, asomando sólo su borde anatómico.

En el momento del hallazgo, no se observaron los grabados pues, no habiendo ningún antecedente que hiciera sospechar su existencia, no se examinó la pieza con cuidado.

El trabajo se reconoció al estar limpiando el hueso en el Gabinete y gracias a que el autor usó, accidentalmente, una luz tangencial que puso de relieve los grabados.

Estudio de la pieza: Por no haber ningún precedente en América de descubrimientos de grabados prehistóricos, que sirvieran de comparación y dada la falta de experiencia del autor en esa especialidad, pues lo único que recordaba eran algunos ejemplares que había visto en museos de Inglaterra, Francia y Checosolvaquia, pertenecientes a otras culturas y con otras características de trabajo, por todo ello consideró necesario exiremar la cautela antes de hacer un anuncio púb|ico y, du-
ranto un año, el autor mantuvo en secreto el hallazgo para dar oportunidad a que lo examinaran especialistas calificados y se pudieran hacer los estudios pertinentes.

En el curso de ese año, estudiaron la pieza los investigadores de las instituciones oficiales y la mayor parte de los científicos extranjeros, ya mencionados anteriormente, quienes se habían mantenido en contacto directo cen todos los trabajos realizados en Valsequillo.

Los estudios comprendieron, desde a ident:ficación del material óseo y la técnica de trabajo, hasta la interpretación de los grabados.

Al hueso se le pudo identificar como parte de la pelvis de un mastodonte, gracias a haber hallado unos días antes una pelvis casi completa de ese amimal, junto con dos molares y otros huesos de valor diagnóstico. (Posteriormente, cuando el ''Proyecto Valsequilio' hizo excavaciones arqueológicas en la localidad de E! Horno, se comprobó esa identificación con otra peivis de mastodonte que ahí se encontró, asociada con artefactos de pedernal).

Respecto a la antigüedad del hueso, por haberse hallado empotrada en la Formación Tetela, por pertenecer a un animal extinto del Período Cuaternario y, además, por tener el mismo grado de mineralización que los materiaies fósiles procedentes de ese estrato, se le consideró contemporáneo de ellos y de la misma antigüedad cuaternaria.

Los grabados que conserva la pieza son una superposición de elementos -verdadera tentación para la.interpretación imaginativa- con surcos de buril de muy poca profundidad, pero de trazo bastante preciso.

Obviamente, estaba más allá de toda duda que ese trabajo únicamente pudo ser hecho por el hombre: pero quedaba por esclarecer si eran grabados verdadercs, realizados con toda intención representativa, o si sólo se trataba de rayaduras accidentales, como las cortaduras creúrgicas. El estudio comparativo que se efectuó con ese motivo, puso de manifiesto lo siguiente:

Todas las cortaduras creúrgicas y rayaduras accidentales, aun en los casos en que aparecen en grupos y superpuestas, siempre son individuales y no tienen continuidad. En tanto que, en la pieza en estudio, las líneas grabadas tienen continuidad
por sistema, afirmada por medio de rectificaciones y enlaces (Figs. 71, 72, 73 y 74).

Además, en las cortaduras creúrgicas y rayâduras accidentales, nunca se han observado curvas pronunciadas, ni elementos cerrados (como puede verse en la muestra de Cortaduras Creúrgicas); cosa totalmente diferente al hueso grabado, donde abundan, precisamente, curvas pronunciadas y ciementos cerrados (Figs. 71, 72, 73 y 74).

No conforme con esas observaciones, el autor trató de reproducir el trabajo que conserva la pieza, cortando carne cruda y piel sobre huesos frescos y, a pesar de que las pruebas se hicieron en forma deliberada y cuidadosa, los resultados fueron comp'etamente negativos y no pudo reproducir ni una sola de las figuras grabadas.

Con la certeza de que el hueso era de antigüedad cuaternaria y con la convicción de que el trabajo era grabado verdadero, aún quedaba pendiente el problema de saber si la pieza había sido grabada 'en fresco'", es decir, muy poco tiempo después de haber muerto el mastodonte y en plena época cuaternaria, o muchos siglos después, cuando el hueso ya estaba mineralizado.

Las pruebas experimentales para dilucidar eso, dierón resultados muy objetivos:

En un hueso fresco, el buril (lo mismo de pedernal que de acerol. dejó un surco orlado de diminutas facelas y briznas microscópicas elásticas, de materia orgánica, que no pudo arrancar el buril a su paso. En tanto que, en un hueso fósil de Valsequillo, el surco del buril resultó ser neto y sólo alterado por desportilladuras microscópicas. de forma conchoidal, propias de su composic:ón mineral lque, según el análisis químico, es apatita y calcita $\left.{ }^{(36}\right)$.

El mejor testimonio de que el hueso Tetela 1 fué grabado "en fresco" son las briznas microscópicas que se fosilizaron, al mismo tiempo que toda la pieza, invadiendo los surcos de grabado y que se pueden observar que tienen idéntico grado de mineralización que el resto del hueso (Fig. 65).

Los estudios microscópicos se efectuaron en el Gabinete de Histología de la Escuela de Medicina y en el Instituto de Biología, de la Universidad Autónoma de Puebla, bajo la dirección de ics dectores Andrés Anaya y Ju'io Glockner, respectivamente; habiendo participado en ellos el biólogo Profr. Wolfgang Boege.

Dictamen de los Grabados: Para conocer tha opinión exclusivamente técnica del trabajo, la pieza fué examinada por D. Senén Sánchez Tostado, grabador de profesión y Profesor de Grabado de ta Academia de Bollas Artes, quien primeramente hizo notar que para grabar un hueso fresco de superficie dura, como el de la pieza, se requiere cierto esfuerzo y saber contro'ar el buril, cosas que sólo se adquieren con una larga práctica. Hecha esta salvedad inicial, el Profr. Sánchez Tostado dictaminó que en el ospécimen en estudio "se apresia que fué trabaịado con líneas fuertes y líneas finas, ambas con continuidad; tiene puntos remarcados y pequeñas áreas vaciadas. Paralslo a alzunas l'ineas, se obsarva un punteado fino. que posiblemente fué par: del boceto, ta' como lo acostumbran hacer todavía algunos grabadores. Las figuras que tienc es un buen trabajo da miniaturismo, llevado a ciorto grado de estilización, según se desprende do la limpieza de trazo y seguridad en la ejecución de las curvas; por lo que buede decirse que quien lo grabó ya tenía cierto oficio, conocía el material y dominaba bastante e' buríl".

Interpretación de los Grabados: Tratar de interpretar trazos superpuestos, como los que conserva esta pieza, es asunto muy subietivo y de criterio tan personal, quo a veces desborda hacia el diagnóstico. de la psicología clínica. Precisamente por esa razón, se sometió la pieza al dictamen del Psicólogo Clínico Dr. Francisco Ciófalo Zúñiga (${ }^{(22)}$. quien rnanifestó:
"En la superficie de la pieza se perciben trazos de obra artística, a la usanza primitiva. De la parte central hasia arriba, resaltan dos figuras que representan sendos animales: la de cbajo se asemeja a un proboscídeo y la superior, según mi entender, a una fiera camicera, quizá un gran felino, las figuras son esquemáticas y la superior es sumamente dinámica.
"Opino que los trazos son intencionales y de producción humana. Las líneas de los grabados son precisas y definidas, hasta donde lo permite la superposición de las figuras. Descarto la posibilidad de diversos cortes al azar, pues se necesitarían millones para producir las dos figuras más netas de la p:eza.
"Esos grabados son notablemente parecidos a los paleolíticos y, en caso de que un adulto o un niño de nuestra cultura los hubiere trazado, su madurez psíquica estaría ligeramente por debajo de los doce años de edad mental'.

Para Michael D. Coe (33), del Departamento de Antropología de la Universidad cie Yale, este hueso grabado... "ss el único espécimen de arte representativo del Período Pleistoceno que tenemos para todo el Nuevo Mundo. Recuerda las magníficas astas incisas del Paleo.ítico Superior de Europa, aun cuando infinitamente más tosco que cualquiera de ellas y refleja la obsesión de ambos hemisferios por la caza de los animales: "arte para conseguir carne", como ha sido irreverentemente designado".

La referencia que hace de la pieza The American Heritage Book of Indians (${ }^{38}$), merece transcribirse por ser una obra en la que intervinieron numerosas Instituciones científicas y destacadas autoridades en la materia:
" Y en el antes mencionado hallazgo de Puebia: en la primavera de 1959, en un sitio conocido como Tetela, al sudeste de Puebla, México, fueron descubiertos cuatro fragmentos de hueso, en uno de los cuales, de mamut o mastodonte, están grabadas cabezas de folino, serpiente, mastodonte y escenas de caza, todas ejecutadas con una extraordinaria habilidad artística, considerando su probable antigüedad. El hallazgo fué guardado en secreto durante más de un año, mientras el Dr. Juan Armenta, a cargo de las excavaciones, invitó a proeminentes especialistas a estudiar lo que es quizá un descubrimiento que marcará una nueva época en el sentido literal de la palabra, una nueva época que será acuñada probablemente en los libros do Prehistoria. La creencia al presente, basada en la geología y en los fósiles hallados en asociación con los grabados, es que ellos pueden actualmente facharse atrás del largo período libre de hielo, anterior al principio de la Glaciación Wisconsin. Si es así, ellos probarán ser de primera importancia no sólo para la historia antigua de América. sino para el mundo entero".

Las Figuras Grabadas: Con el propósito de individualizar algunos elementos de la superposición de grabados, ei autor -reconociendo su falta de experiencia en esta labor- usó la técnica de Breuil y, con la ayuda del microscopio de pequeño aumento, fué siguiendo el trazo de cada elemento que muestra clara continuidad; logrando, de esta manera, hacer una separación tentativa de figuras (Fig. 70), que, obviamente, está sujeta a todo género de rectificaciones.

Addenda

En el grado en que apenas se encuentran las investigaciones, resultaría aventurado tratar de identificar a toc'os los animales representados en el Hueso Grabacio Tetela 1. Sin embargo, el au-
tor no ha podido pasar por alto una figura de proboscídeo que tiene claramente grabadas defensas (o 'colmillos'), tanto en la parte superior como en la inferior del hocico (Fig. AD-I).

Precisamente, ese tipo de dobles defensas es lo que caracteriza al Ryncotherium tlascalae, antiquísimo mastodonte cuyos restos se he'n descubierto en diferentes localidades de Valsequillo (Fig. AD-2).

La identificación del Ryncotherium se ha podido lograr gracias a numerosos molares, que tienen como particularidad prétritos trebolados y la característica banda de esmále de sus defensas (Fig. AD-3). Este mastodonte ha sido estudiado por varios investigadores, entre quienes están H. F. Osborn (5), W. Freudenberg (7) y M. Pichardo del Marrio (${ }^{30}$).

64. Huesos grabados: Espécimen "Tetela 1".

2

65. 1 y 2, microfotografias del grabado que conserva el hueso "Tetela 1": 1, aspecto de un surco, visto con mediano aumento; 2, con un aumento mayor, se obser va la retracción del desfacelado de los bordes y agrie tamientos causados por la desaparición de la osteina durante la fosilización y, en el fondo del surco, algunas briznas microscópicas, desprendidas al ser grabado el hueso en fresco y que se fosilizaron al igual que toda la pieza.

66. Espécimen "Tetela 1": microfotografia de uno de los surcos del grabaio, en el que se observan las pequeñas oquedades producidas por el buril al arrancar pequeñas fibras del tejido óseo y los "asentamientos" o cortes escalonados dejados por el buril.

67. Fotografía del espécimen "Tetela 1", tomada con luz monocromática.

68. Calca de los grabados que conserva el hueso
"Tetela 1".

69. Distribución de los elementos principales del espécimen "Tetela 1 ".

70. Separación tentativa de las figuras grabadas en el hueso "Tetela 1", usando el método de Breuil.

71. Espécimen Tetela 1, detalle.

72. Espécimen Tetela 1, detalle.

74. Espécimen Tetela 1, detalle.

AD-1. 1, detalle del grabado y 2, copia libre de la figura D que se observa en la parte central del Hueso Grabado Tetela 1, que representa claramente a un proboscídeo con dobles defensas.

AD-2. Aspecto que tenía el Ryncotherium tlascalae, antiquísimo mastodonte del Valle de Puebla cuya principal característica era poseer dobles defensas. (Según los trabajos reconstructivos de H. F. Osborn (${ }^{(5)}$.

1
2

AD-3 Restos de Ryncotherium tlascalae, descubiertos
en la localidad de Arenillas: 1, molar con los caracterís-
ticos prétritos trebolados y 2, extremo de una defensa inferior, con su peculiar banda de esmalte.

75. Huesos grabados: Espécimen "Atepitzingo 1". Este ejemplar es un fragmento de hueso largo de proboscídeo, cuyos grabados se han dejado cubiertos por materiales del terreno de hallazgo, para identificación de su procedencia estratigráfica. Fué hallado por Luis Vázquez Rangel, en la localidad de Atepitzingo.

76. Calca simple de los grabados del hueso "Atepitzingo 1 ", antes de ser limpiado.

7\%. Huesos grabados: 1, espécimen "Atepitzingo II"; Es un pequeño fragmento de cráneo que conserva, dentro de una depresión anatómica, tres incisiones en V , unidas a manera de greca; 2, espécimen "Atepitzingo III"; También es un fragmento de cráneo, que muestra trabajo de grabado en una depresión anatómica. Ambos ejemplares fueron hallados en la localidad Atepitzingo.

78. 1 y 2, calca simple de los grabados
que se observan en los ejemplares "Atepitzingo II", y "Atepitzingo III".

79. Hueso grabado: espécimen "Tetela II". Es un fragmento de hueso largo, cuyo extremo fué cortado y pulido en forma de escoplo; en su cara externa conserva unos grabados; 2, detalle de los grabados. Esta pieza fué hallada en la localidad de Tecacaxco (Tetela).

80. Hueso grabado; espécimen "Tetela III". Es un fragmento de hueso largo de proboscídeo, de forma irregular, cuya cara externa conserva grabados, confundidos con accidentes anatómicos propios de la superficie del hueso. Fué hallado en Tecacaxco.

[^2]
$D_{\text {iscusion y }}$ Conclusiones

Los especímenes descritos en esta memoria son, sin excepción, restos de animales extintos del Período Pieistocono, lo cual nos permite ubicar el fenómeno cultural que se investiga.

Las pruebas reconstructivas han demostrado, plenamente, que las señales de trabajo que conservan dichos materiales son de la misma época, pues corresponden a mániobras de destazamiento que sólo pudieron ser realizadas por los cazadores cuando los huesos aún estaban frescos.

Las lesiones que muestran los huesos no son ninguna novedad para la ciencia médica y la Traumatología tiene bien estudiado su proceso etiológico, por lo que su contemporaneidad y origen humano tampoco son discutibles.

Por lo que se refiere a los fragmentos de hueso que el autor considera que han sido modificados por el hombre y/o que tienen señales de uso, las pruebas mecánicas y de acarreo descartan toda posibilidad de que sean productos de agentes naturales y, aun cuando no se ha investigado todavía el uso para ol que fueron deskinados, cabe
señalar su semejanza con implementos de hueso de otras cu'turas prehistóricas.

Elementos sobresalientes en la investigación son los huesos grabados, primeros que se descubren en América, de antigüedad cuaternaria. Las pruebas reconstructivas, los estudios de laboratorio y el dictamen de especialistas altamente calificados, no dejan margen de duda respecto a su autenticidad y valor cultural, lo que permite asegurar que 'os cazadores que poblaron el Nuevo Mundo en la remota antigüedad prehistórica ya poseían las más altas cualidades humanas, incluyendo las inquietudes artísticas.

La antigüedad de los materiales ha sido determinada por insobornables pruebas de laboratorio. cuya validez sólo podría ser descartada con otras pruebas científicas. Mientras eso no suceda, los descubrimientos de Valsequiilo están calificados para establecer un nuevo precedente en la historia de la cultura y plantean la necesidad de revisar los conceptos, que hasta ahora se tenían, del pasado prehistórico.

Nota:

Todos los materiales descritos en este trabajo, al igual que todos los materia'es descubiertos por el 'Proyecto Valsequilio', la Colección Osteológica de! Departamento de Antropología de la Universidad Autónoma de Puebla, y las demás colecciones y equipo que había reunido el Departamento de Antropo'ogía de la U.A.P., se encuentran en en poder del Instituto Nacional de Antropología e Historia. La entrega de todos esos materiales la hizo el autor, conforme a un inventario detallado y Acta Certificada por el Notario Público Lic. Benjamín del Calleịo, una de cùyas copias fué depositada en el Departamento Jurídico de la Universidad Autónoma de. Puebla, siendo titular el Lic. Oscar Bouchez Markoe.

La antiguedad de los materiales que aqui se describen, es un asunto que rebasa el prop este trabajo. Sin embargo, por la utilidad que pudiera tener para estudios de evoluci ral, se transcriben los resultados de las pruebas de C_{14} y de las Series del Uranio (
$\left.\mathrm{Th}_{230} / \mathrm{U}_{234}-\mathrm{Th}_{230} / \mathrm{Th}_{232}-\mathrm{Pa}_{231} / U_{235}\right)$					
Muestra No.	LOCALIDAD	$A N T$ I GUE D A D EN A N O S			
		C-14	Th-230	$\mathrm{Pa}-231$	0/S/d
W-1912	La Malinche	5,750 $\ddagger 280$			
W-1923	La Malinche (M)	7,450-250			
	($\operatorname{cota} 3,800 \mathrm{~m}$)				
W-1909	La Malinche (M)	8,240-300			
	$(\operatorname{cota} 4,100 \mathrm{~m})$				
WSU-468	Rio Frio	19,650-800			
W-1995	Rio Frio	>40,000			
W-1896	B. Caulapan +25	m 9,150 500			
W-1895	*B. Caulapan +13	21,850-850			
M-B-6	*B. Caulapan +13		20,000 $-1,500$	22,000-2,000	21,850-850
W-1908	B. Angostura	23,940 $\ddagger 1,000$			
W-1911	B. Xotanacatla	25,920-1,000			
W-1975	B. Caulapan +4	$>29,000$			
W-2189	B. Caulapan +3	30,600-1,000			
M-B-5	B. Caulapan +?		19,000 $-1,500$	18,000 $\div 1,500$	30,600-1,000
W-1898	B. Caulapan +2	$\geq 35,000$			
W-? 899	*Atepitzingo	$\geq 35,000$			
W-1901	B. Xochiac	$>35,000$			
M-B-3	* Hueyatlaco		245,000 ${ }_{ \pm}^{+} 40,000$	$\geq 180,000$	245,000 $+40,000$
M-B-4	*Atepitzingo		340,000-100,000	$\geq 180,000$	260,000-60,000
M-B-8	*E1 Horno		280,000	$\geq 165,000$	$\geq 280,000$

[^3]
LITERATURA
 CITADA

1.-Díaz del Castillo, Bernal: Historia Verdadera de la Conquista de 1 . Nueva España (I):253. Espasa Calpe, Madrid, 1942.
2.-Vázquez de Espinosa, Fray Antonio: Descripción de la Nueva España en el Siglo XVII:86. Edit. Patria, México, 1944.
3.-Gemelli Carreri, Juan F.: Viaje a la Nueva España. Giro del Níondo (II) :234. Libro Mex., México, 1955.
4.-Felix, J. y' Lenk, H.: Ubërsicht über die Geologischen Verhältnisse des Mexicanischen Staates Puebla (Theil III, Beiträge zur Geologie und Paleontologie des Republ:k Mexiko), Palaeontographica (XXXVII) :117-139, Lams. XXX, 1891.
5.-Osborn, H. F.: Proboscidea (II):805-1675. American Museum Press, 1942.
6.-Aveleyra A. de A., L.: El Segundo Mamut Fósil de Santa Isabel Iztapa, México, y Artefactos Asociados. Dirección de Prehitsoria, I.N.A.H., Pub. 1, 1955.
7.-Freudenberg, W.: Die Sägetierfauna des Pliocäns und Postpliocäns von Mexiko, II Theil: Mastodonten und Elefanten, Geol. u. Paläont. Anh. XIV (XVIII) Heft III:103-176,1922.
8.--Romer, A. S.: Vertebrate Paleontology, The Univ. of Chicago Press, 1953.
9.-Maldonado-Koerdell, M.:Los Vertebrados Fósiles del Cuaternario en México, Rev. Soc. Mex Hist. Nat., IX(1-2):23-24, 1948.
10.--Hibbard, C. W.: Pleistocene Vertebrate from the Upper Becer:a (Bocerra Superior) Formation, Valley (f Tequixquiac, México, With Notes on Other Pleistocene Form: (Contrib. Mus. Paleont. Univ, Mich. XII (5) : $47-96,1955$.
11.-Osborn, H. F.: Recent Vertebrate Paleontology Fossil Mammals of Mexico, Science (n. ser.) XXI(546):931-932,1905.
12.-Armenta, J.: Hallazgos Prehistóricos en el Valle de Puebla, Centro de Est. Hist. de Puebla, pub. 2, Puebla, 1957.
13.-Armenta J.: Hallazgo de un Artefacto Asociado con Mamut, en el Valle de Puebla, Instituto Pcblano de Antropología e Historia, I.N.A.H., Dirección de Prehistoria, Pub. 7, México, 1959.
14.-The American Philosophical Society, Excavations at Valsequillo, Mexico (Report of Committee on Research) Year Bcok 1961:457.
15.-Bcyd, H. B. y George, I. L.: Fractures of the Hip, M. A. 137: 1196-1948.
16.-Böhler, Lorenz: Técnica del Tratamiento de las Fracturas (Etiología y Clasificación de las Fracturas) (1):4, Edit. Labor, Barcelona, 1960.
17.-Campbell, Willis C.: Fractures in and about the Neck of the Femur, Minnesota Med. 15:654, 1932.
18.--Campbell's Operative Orthopedics (1), The C. V. Mcsby Co., St. Louis, 1956.
19.--Campbell, Willis Cohoon:, Cirug'a Ortofédica, Memphis, 1967.
20.-Key, J. A.: Treatment of Fractures of the Head and Nec': of he Radius, J.A.M.A. 96:101, 1931.
21.-Lambotte, A.: Chirug e Opératoire des Fraciu:es, Mass̃n \& Cie., Paris, 1913.
22.-Moorhead, John J.: Clinical Traumatic Surgery, W. B. Saunders Co., Philadelphia, 1946.
23.-Patrick, J.: A Study of supination and Pronation, with spaciai refcrence to the Treatment of Forearm Fractures, J. Bone and Jair Surg. 28:737, 1945.
24.-Rienau, G.: Physiopathclogie des Fracturcs, Encyclopédie MedicoChirurgicale - Os - Articulations, Fasc. 14002-B ${ }^{10}$, Paris 1957.
25.-Ste:ndler, Arthure: Orthopedic Operation, Thomas Books, Baltimore, 1943.
26.-Watson-Jones, R.: Fracturas y Traumatismos Articulares, Edit. Salvat, Barcelona, 1945.
27.-Watson-Jones, R.: Dislocation and Fracture-Dislocations of the Pelvis, Brit. J. Surg 80:230, 1950.
28.-Martin, H.: La Percussion Osseuse et les Esquilles qui en Dérivent Experimentation, Extrait du Bulletin de la Société Préhistorique de France: 299-304, Séance du 26 Mai 1910.
29.-Martin, H.: Recherches sur L'evolution du Moustérien Dans le Gisement de La Quina (Charente), IIIem. Fascicule. Industrie Osseuse: 183-315, Schleicher Freres, Edit., Paris, 1910.
30.-Pichardo del B., M.: Proboscídeos Fósiles de Méx co - Una Revisión, Inst. Nac. de Antrop. e Hist., Serie Investigaciones, No. 4, México, 1960.
31.-Semenov, A. S.: Prehistoric Technology. An Experimental Study of the Oldest Tools and Artefacts from Traces of Manufacture and Wear, Cory, Adams and MacKay, London, 1964.
32.-Kitching, James W.: Bone, Tooth and Horn Tools of Paleolithic Man, Manchester University Press, 1963.
33.-Coe, Michael D.: Mexico: 40-41, Thames and Hudson, London, 1962.
34.-Malde, Harold E. y Cynthia Irwin-Williams: Preliminary Report on Radiocarbon Dates from the Valsequillo Area, Pucbla, Mexico, Peabody Museum of Archaelogy and Ethnology, Harvard University Press, 1967.
35.-Malde, Harold E.: Text of Oral Report on Geologic Age of Valsequillo Archaeologic Sites, Annual Meeting of Scciety for American Archaeology, Ann Arbor, Michigan, 1967. .
36.-Szabo, Barney J., Harold E. Malde y Cynth a Irwin-Williams: Dilemma Posed by Uranium-Series Dates on Archaelogically Significant Bones from Valsequillo, Puebla, Mexico, Earth and Planetary Science Letters: (6) 4: 237-244, North-Holland Publishing Company, Amsterdam, July 1969.
37.-Steen-McIntyre, Virginia, Roald Fryxell y Harold E. Malde: Text of Oral Report on Unexpectedly Old Age of Deposits at Hueyatlaco Archaelogical Site, Valsequillo, Mexico, Implied by New Strat:graphic and Petrographic Findings, Geological Soc ety of America, Annual Meeting, Dallas, Texas, 1973.
38.-The American Heritage Book of Indians. Introducción por John F. Kennedy: 14 y 28, American Heritage Pub. 1961.
39.-Ciófalo Zúñiga, F.: (Comunicación personal).

INDICEGENERAL

INTRODUCCION.-La Zona Prehistórica de Valsequillo. Los Fósiles Cuaternarios. LosMateriales de Valsequillo. Los Trabajos Prehistóricos en Valsequillo.9
METODOS Y MATERIALES.—Estudios Preliminares. Control Experimental: Pruebas deAcarreo, en Revolvedora, de Compresión, de Flexo-Comprensión y Manuales.17
ESPECIMENES:

- Lesiones de Caza 25
-Desarticulación 35
-Esquirlas Helicoidales 39
-Truncamiento Simple y Esquirlas Lanccoladas 45
-Trepanación 53
-Cortaduras Creúrgicas 55
-Uso de Fuego 67
--Fragmentos Modificados 71
--Perforación 89
-Huesos Grabados 95
DISCUSION Y CONCLLSIONES 119
GEOCRONOLOGIA 121
LITERATURA CITADA 123

Se acabó de imprimir esta obra el día 17 de febrero de 1978 en los talleres de Offset Mabek - Puebla, Pue. - La edición gonsta de 1000 ejemplares y estuvo al cuidado del señor Alvaro Jiménez F.

[^0]: verticales.

[^1]:

[^2]: 81. Detalle de los grabados del ejemplar
[^3]: (*) Contiene restos culturales.

